[1] 王博翰, 杨斌 陈铭. 报废汽车破碎残余物及其塑料组分的催化热解研究[J]. 机械设计与制造, 2020(3): 9-12. doi: 10.3969/j.issn.1001-3997.2020.03.003
[2] NOTARNICOLA M, CORNACCHIA G, DE GISI S, et al. Pyrolysis of automotive shredder residue in a bench scale rotary kiln[J]. Waste Management, 2017, 65: 92-103. doi: 10.1016/j.wasman.2017.04.002
[3] MANCINI G, VIOTTI P, LUCIANO A, et al. On the ASR and ASR thermal residues characterization of full scale treatment plant[J]. Waste Management, 2014, 34(2): 448-457. doi: 10.1016/j.wasman.2013.11.002
[4] LOMBARDI L, CARNEVALE E, CORTI A. A review of technologies and performances of thermal treatment systems for energy recovery from waste[J]. Waste Management, 2015, 37: 26-44. doi: 10.1016/j.wasman.2014.11.010
[5] ANZANO M, COLLINA E, PICCINELLI E, et al. Lab-scale pyrolysis of the automotive shredder residue light fraction and characterization of tar and solid products[J]. Waste Management, 2017, 64: 263-271. doi: 10.1016/j.wasman.2017.03.013
[6] DONAJ P, YANG W H, BŁASIAK W, et al. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification[J]. Journal of Hazardous Materials, 2010, 182: 80-89. doi: 10.1016/j.jhazmat.2010.05.140
[7] DE MARCO I, CABALLERO B M, CABRERO M A, et al. Recycling of automobile shredder residues by means of pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79: 403-408. doi: 10.1016/j.jaap.2006.12.002
[8] ZOLEZZI M, NICOLELLA C , FERRARA S, et al. Conventional and fast pyrolysis of automobile shredder residues (ASR)[J]. Waste Management, 2004, 24(7): 691-699.
[9] DONG W G, CHEN Z W, CHEN J C, et al. A novel method for the estimation of higher heating value of municipal solid wastes[J]. Energies, 2022, 15(7): 2593-2607. doi: 10.3390/en15072593
[10] QI R Y, CHEN Z W, WANG M F, et al. Prediction method for torrefied rice gusk based on gray-scale analysis[J]. Acs Omega, 2019, 4(18): 17837-17842. doi: 10.1021/acsomega.9b02478
[11] LIU S M, SUN H T, ZHANG D M, et al. Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics[J]. Energy, 2023, 275: 127470.
[12] 刘晓锋, 杨攀博, 王健, 等. 麦秆与褐煤共热解特性及动力学分析[J]. 太阳能学报, 2021, 42(9): 410-415. doi: 10.19912/j.0254-0096.tynxb.2020-0666
[13] 郑志行, 张家元, 李谦, 等. 下吸式固定床的生物质H2O/CO2气化数值模拟研究[J]. 太阳能学报, 2022, 43(5): 377-382.
[14] 陈雨佳, 王勤辉, 王中霞, 等. 秸秆循环流化床空气气化特性的实验研究[J]. 动力工程学报, 2019, 39(10): 847-852.
[15] 张伟, 陈晓平, 王清, 等. 城市污泥流化床中低温空气气化及重金属迁移特性[J]. 化工进展, 2019, 38(4): 2011-2021. doi: 10.16085/j.issn.1000-6613.2018-1231
[16] 于旷世. 循环流化床双床煤气化工艺试验研究[D]. 北京: 中国科学院研究生院, 2012.
[17] 杨益. 烟草废弃物热解和气化的实验及机理研究[D]. 武汉: 华中科技大学, 2012.