[1] EFSA. Cadmium dietary exposure in the European population[S]. 2012, 10: 2551.
[2] 周立祥. 生物矿化: 构建酸性矿山废水新型被动处理系统的新方法[J]. 化学学报, 2017, 75(6): 552-559.
[3] 陈宏坪, 韩占涛, 沈仁芳, 等. 废弃矿山酸性矿井水产生过程与生态治理技术[J]. 环境保护科学, 2021, 47(6): 73-80.
[4] 艾雨露, 陈宏坪, 陈梦舫等. 全球主要产煤国煤矿AMD污染特征与治理技术 [J]. 煤炭学报, 2023, 48 (12): 4521-4535.
[5] 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2022[S]. 2022.
[6] CHEN H P, AI Y L, JIA Y F, et al. Effective and simultaneous removal of heavy metals and neutralization of acid mine drainage using an attapulgite-soda residue based adsorbent[J]. Science of the Total Environment, 2022, 843: 157120. doi: 10.1016/j.scitotenv.2022.157120
[7] CHEN H P, LI J, DAI Z B, et al. In-situ immobilization of arsenic and antimony containing acid mine drainage through chemically forming layered double hydroxides[J]. Science of the Total Environment, 2023, 903: 166601. doi: 10.1016/j.scitotenv.2023.166601
[8] AI Y L, CHEN H P, CHEN M F, et al. Characteristics and mechanism of effectively capturing arsenate by sulfate intercalated and self-doping layered double hydroxide derived from field acid mine drainage[J]. Separation and Purification Technology, 2024, 331: 125763. doi: 10.1016/j.seppur.2023.125763
[9] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[R]. 2023.
[10] 贾郁菲, 陈宏坪, 张文影, 等. 甲壳生物质修复废弃煤矿酸性矿坑水研究进展 [J/OL]. 环境保护科学, 1-8[2024-01-17] https://doi.org/10.16803/j.cnki.issn.1004-6216.202303014.
[11] KONG L J, ZHANG H M, JI W, et al. Recovery of phosphorus rich krill shell biowaste for uranium immobilization: A study of sorption behavior, surface reaction, and phase transformation[J]. Environmental Pollution, 2018, 243: 630-636. doi: 10.1016/j.envpol.2018.08.023
[12] 李平, 金兰淑, 林国林, 等. 巯基酯化壳聚糖的合成及对Cd2+的去除性能研究[J]. 环境工程学报, 2014, 8(1): 254-259.
[13] HU W Q, CHEN S and JIANG H. Crayfish shell waste as safe biosorbent for removal of Cu2+ and Pb2+ from synthetic wastewater[J]. Chinese Journal of Chemical Physics, 2022, 35: 842-852. doi: 10.1063/1674-0068/cjcp2001011
[14] ABDOU E S, NAGY K S and ELSABEE M Z. Extraction and characterization of chitin and chitosan from local sources[J]. Bioresource Technology, 2008, 99: 1359-1367. doi: 10.1016/j.biortech.2007.01.051
[15] KURITA K. Chitin and chitosan: Functional biopolymers from marine crustaceans[J]. Marine Biotechnology, 2006, 8: 203-226. doi: 10.1007/s10126-005-0097-5
[16] PINTO P X, AL-ABED S R and EISMAN D J. Biosorption of heavy metals from mining influenced water onto chitin products[J]. Chemical Engineering Journal, 2011, 166: 1002-1009. doi: 10.1016/j.cej.2010.11.091
[17] KHAN A, BADSHAH S and AIROLDI C. Biosorption of some toxic metal ions by chitosan modified with glycidylmethacrylate and diethylenetriamine[J]. Chemical Engineering Journal, 2011, 171: 159-166. doi: 10.1016/j.cej.2011.03.081
[18] BOULAICHE W, HAMDI B and TRARI M. Removal of heavy metals by chitin: Equilibrium, kinetic and thermodynamic studies[J]. Applied Water Science, 2019, 9: 1-10. doi: 10.1007/s13201-018-0879-3
[19] YANG J, LI M, WANG Y F, et al. High-strength physically multi-cross-linked chitosan hydrogels and aerogels for removing heavy-metal ions[J]. Journal of Agricultural and Food Chemistry, 2019, 67: 13648-13657. doi: 10.1021/acs.jafc.9b05063
[20] 吴琦, 戴凌青, 杨文叶, 等. 虾壳粉对水溶液中阴、阳离子型染料的吸附[J]. 环境工程学报, 2019, 13(3): 594-606.
[21] 晏侬洋, 王美丹, 张权, 等. 基于电镜与红外光谱技术研究不同处理方式对小龙虾虾壳粉表观结构的影响[J]. 食品安全质量检测学报, 2021, 12(8): 3182-3186.
[22] DOU D T, WEI D L, GUAN X, et al. Adsorption of copper (II) and cadmium (II) ions by in situ doped nano-calcium carbonate high-intensity chitin hydrogels[J]. Journal of Hazardous Materials, 2022, 423: 127137. doi: 10.1016/j.jhazmat.2021.127137
[23] SANGEETHA K, PANGELIN V, SUDHA P N, et al. Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium[J]. International Journal of Biological Macromolecules, 2019, 132: 939-953. doi: 10.1016/j.ijbiomac.2019.03.244