[1] 贾璇, 郭萌, 冶荣霞, 等. 米曲霉发酵厨余垃圾制备富酶产物的研究[J]. 环境科学研究, 2022, 35(3): 828-835.
[2] 方文敏, 洪霄伟, 张赐华, 等. 破碎厨余垃圾对公共排水系统的影响[J]. 中国给水排水, 2023, 39(1): 34-38.
[3] 窦润琦, 郭美欣, 郭萌, 等. 二氧化锰对厨余垃圾制备液体肥中腐殖质形成的影响[J]. 环境工程学报, 2023, 17(7): 2352-2360.
[4] WU C F, HUANG Q Q, YU M, et al. Effects of digestate recirculation on a two-stage anaerobic digestion system, particularly focusing on metabolite correlation analysis[J]. Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies, 2018.
[5] 常城, 明磊强, 牟云飞, 等. 厨余垃圾与污泥厌氧发酵产甲烷的协同作用[J]. 中国环境科学, 2022, 42(3): 1259-1266.
[6] 黄伟钊, 林艺平, 陈家钦. 不同接种物对厨余垃圾厌氧发酵的影响[J]. 环境卫生工程, 2019, 27(6): 53-56.
[7] 陈雪, 袁海荣, 邹德勋, 等. 餐厨垃圾和稻草两相厌氧发酵及其动力学[J]. 环境工程学报, 2015, 9(5): 2405-2411.
[8] 马涛. 粪便污水处理技术和机械设备应用分析[J]. 现代制造技术与装备, 2021, 57(8): 144-145.
[9] 左斯琪, 李子富. 黑水无害化及资源化处理技术进展[J]. 环境卫生工程, 2020, 28(4): 37-44.
[10] ZHANG L M, GUO B, ZHANG Q, et al. Co-digestion of blackwater with kitchen organic waste: Effects of mixing ratios and insights into microbial community[J]. Journal of Cleaner Production, 2019, 236: 117703. doi: 10.1016/j.jclepro.2019.117703
[11] GAO M J, GUO B, ZHANG L M, et al. Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater[J]. Water Research, 2019, 160: 249-258. doi: 10.1016/j.watres.2019.05.077
[12] ZHANG Q, ZHANG L M, GUO B, et al. Mesophiles outperform thermophiles in the anaerobic digestion of blackwater with kitchen residuals: Insights into process limitations[J]. Waste Management, 2020, 105: 279-288. doi: 10.1016/j.wasman.2020.02.018
[13] LEE E, BITTENCOURT P, CASIMIR L, et al. Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge[J]. Waste Management, 2019, 95(2): 432-439.
[14] WANG H H, LI Z F, ZHOU X Q, et al. Anaerobic Co-Digestion of Kitchen Waste and Blackwater for Different Practical Application Scenarios in Decentralized Scale: From Wastes to Energy Recovery[J]. Water, 2020, 12(9): 2556. doi: 10.3390/w12092556
[15] WARD A J, HOBBS P J, HOLLIMAN P J, et al. Optimisation of the anaerobic digestion of agricultural resources[J]. Bioresource Technology, 2008, 99(17): 7928-7940. doi: 10.1016/j.biortech.2008.02.044
[16] MAO C L, FENG Y Z, WANG X J, et al. Review on research achievements of biogas from anaerobic digestion[J]. Renewable & Sustainable Energy Reviews, 2015, 45: 540-555.
[17] 胡崇亮, 张栋, 戴翎翎, 等. 厌氧发酵过程氨抑制研究进展[J]. 环境工程, 2016, 34(12): 23-27+63.
[18] WANG X M, LI Z F, BAI X, et al. Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process[J]. Bioresource Technology, 2017: 290-297.
[19] 余益辉, 黄振兴, 高树梅, 等. 固相餐厨垃圾厌氧发酵特性[J]. 环境工程学报, 2015, 9(1): 355-361.
[20] 杨紫怡, 王雯, 马宗虎, 等. 长链脂肪酸对餐厨垃圾厌氧发酵产甲烷的影响[J]. 环境工程学报, 2017, 11(10): 5651-5657.
[21] 景二丹, 许小燕, 韩云, 等. 餐厨厌氧发酵工艺影响因素的探究[C]//中国环境科学学会环境工程分会. 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(三). 工业建筑杂志社有限公司, 2021: 3.
[22] 徐家英. 氨氮对厌氧发酵脂肪酸浓度的影响研究[J]. 中国沼气, 2021, 39(5): 12-16.
[23] 甄月月, 葛一洪, 施国中, 等. 不同含固率和接种比对尾菜厌氧发酵的影响[J]. 中国沼气, 2020, 38(2): 45-51.
[24] 王佳君, 陆洪宇, 陈志强, 等. 接种量对餐厨垃圾中温厌氧产甲烷潜能的影响[J]. 环境工程学报, 2017, 11(1): 541-545.
[25] 蒋建国, 王岩, 隋继超, 等. 厨余垃圾高固体厌氧发酵处理中氨氮浓度变化及其影响[J]. 中国环境科学, 2007(6): 721-726.
[26] POIRIER S, MADIGOU C, BOUCHEZ T, et al. Improving anaerobic digestion with support media: Mitigation of ammonia inhibition and effect on microbial communities[J]. Bioresource Technology, 2017, 235: 229-239. doi: 10.1016/j.biortech.2017.03.099
[27] 杨祎楠, 强虹, 裴梦富, 等. 进料浓度对鸡粪连续中温厌氧发酵的影响[J]. 环境工程学报, 2019, 13(12): 2963-2972.
[28] 郑晓伟, 李兵, 郭栋, 等. 餐厨垃圾厌氧发酵启动特性与产甲烷效率[J]. 环境工程, 2018, 36(9): 128-132.
[29] 刘丹, 李文哲, 高海云, 等. 接种比例和温度对餐厨废弃物厌氧发酵特性的影响[J]. 环境工程学报, 2014, 8(3): 1163-1168.
[30] 许智, 叶小梅, 常志州, 等. 温度对厨余垃圾和人粪尿污水混合液的水解酸化影响[J]. 中国沼气, 2011, 29(3): 9-12.