[1] |
夏景明, 徐子峰, 谈玲. 轻量化网络LW-GCNet在垃圾分类中的应用[J]. 环境工程, 2023, 41(2): 173-180.
|
[2] |
赵冬娥, 吴瑞, 赵宝国, 等. 高光谱成像的垃圾分类识别研究[J]. 光谱学与光谱分析, 2019, 39(3): 921-926.
|
[3] |
XIAO W, YANG J H, FANG H Y, et al. A robust classification algorithm for separation of construction waste using NIR hyperspectral system[J]. Waste Management, 2019, 90: 1-9. doi: 10.1016/j.wasman.2019.04.036
|
[4] |
赵珊, 刘子路, 郑爱玲, 等. 基于MobileNetV2和IFPN改进的SSD垃圾实时分类检测方法[J]. 计算机应用, 2022, 42(S1): 106-111.
|
[5] |
ZHANG Q, ZHANG X, MU X, et al. Recyclable waste image recognition based on deep learning[J]. Resources, Conservation and Recycling, 2021, 171(99): 105636.
|
[6] |
ZHANG S, CHEN Y M, YANG Z L, et al. Computer vision based two-stage waste recognition-retrieval algorithm for waste classification[J]. Resources, Conservation and Recycling, 2021, 169: 105543. doi: 10.1016/j.resconrec.2021.105543
|
[7] |
高明, 陈玉涵, 张泽慧, 等. 基于新型空间注意力机制和迁移学习的垃圾图像分类算法[J]. 系统工程理论与实践, 2021, 41(2): 498-512.
|
[8] |
康庄, 杨杰, 郭濠奇. 基于机器视觉的垃圾自动分类系统设计[J]. 浙江大学学报(工学版), 2020, 54(7): 1272-1280+1307.
|
[9] |
马雯, 于炯, 王潇, 等. 基于改进Faster R-CNN的垃圾检测与分类方法[J]. 计算机工程, 2021, 47(8): 294-300.
|
[10] |
LIN K S, ZHOU T, GAO X F, et al. Deep convolutional neural networks for construction and demolition waste classification: VGGNet structures, cyclical learning rate, and knowledge transfer[J]. Journal of Environmental Management, 2022, 318: 115501. doi: 10.1016/j.jenvman.2022.115501
|
[11] |
NOWAKOWSKI P, PAMUA T. Application of deep learning object classifier to improve e-waste collection planning[J]. Waste Management, 2020, 109: 1-9. doi: 10.1016/j.wasman.2020.04.041
|
[12] |
张睿萍, 宁芊, 雷印杰, 等. 基于改进Mask R-CNN的生活垃圾检测[J]. 计算机工程与科学, 2022, 44(11): 2003-2009.
|
[13] |
LU W S, CHEN J J, XUE F. Using computer vision to recognize composition of construction waste mixtures: A semantic segmentation approach[J]. Resources, Conservation and Recycling, 2022, 178: 106022. doi: 10.1016/j.resconrec.2021.106022
|
[14] |
邢洁洁, 谢定进, 杨然兵, 等. 基于YOLOv5s的农田垃圾轻量化检测方法[J]. 农业工程学报, 2022, 38(19): 153-161.
|
[15] |
WANG C Y, BOCHKOVSKIY A, LIAO H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 7464-7475.
|
[16] |
赵元龙, 单玉刚, 袁杰. 改进YOLOv7与DeepSORT的佩戴口罩行人跟踪[J]. 计算机工程与应用, 2023, 59(6): 10.
|
[17] |
WANG Y, FU B, Fu L W, et al. In situ sea cucumber detection across multiple underwater scenes based on convolutional neural networks and image enhancements[J]. Sensors, 2023, 23(4): 2037. doi: 10.3390/s23042037
|
[18] |
WANG J Q, CHEN K, LIU Z W, et al. CARAFE: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 3007-3016.
|
[19] |
陈范凯, 李士心. 改进yolov5的无人机目标检测算法[J]. 计算机工程与应用, 2023, 59(18): 218-225.
|
[20] |
GENNARI M, FAWCETT R, PRISACARIU V A. DSConv: effificient convolution operator[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 5148-5157.
|
[21] |
王浩, 吕晓琪, 谷宇. 基于语义融合与多尺度注意力的红外行人检测[J/OL]. 激光杂志. http://kns.cnki.net/kcms/detail/50.1085.tn.20230213.1802.006.html.
|
[22] |
肖振久, 林渤翰, 曲海成. 改进YOLOv7的SAR舰船检测算法[J]. 计算机工程与应用, 2023, 59(15): 243-252.
|
[23] |
REN S Q, HE K W, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
|
[24] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
[25] |
LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//European Conference on Computer Vision, 2018: 385-400.
|
[26] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the IEEE international conference on computer vision, 2017: 2980-2988.
|