[1] |
LIU W, XU Z Q, LONG Y J, et al. Replenishment of urban landscape ponds with reclaimed water: Spatiotemporal variations of water quality and mechanism of algal inhibition with alum sludge[J]. Science of the Total Environment, 2021, 790: 148052. doi: 10.1016/j.scitotenv.2021.148052
|
[2] |
BORMANS M, MARŠÁLEK B, JANČULA D. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: A review[J]. Aquatic Ecology, 2016, 50(3): 407-422. doi: 10.1007/s10452-015-9564-x
|
[3] |
LI L X, ZHANG W W, ZHANG M Z, et al. Applications of phytoremediation to treat reclaimed water in urban parks using aquatic macrophytes[J]. Aquatic Ecology, 2022, 56(1): 75-88. doi: 10.1007/s10452-021-09894-x
|
[4] |
XIAO H, PENG S T, LIU X B, et al. Phytoremediation of nutrients and organic carbon from contaminated water by aquatic macrophytes and the physiological response[J]. Environmental Technology & Innovation, 2021, 21: 101295.
|
[5] |
ROVIRA A, ALCARAZ C, TROBAJO R. Effects of plant architecture and water velocity on sediment retention by submerged macrophytes[J]. Freshwater Biology, 2016, 61(5): 758-768. doi: 10.1111/fwb.12746
|
[6] |
SHAH M, HASHMI H N, ALI A, et al. Performance assessment of aquatic macrophytes for treatment of municipal wastewater[J]. Journal of Environmental Health Science and Engineering, 2014, 12(1): 106. doi: 10.1186/2052-336X-12-106
|
[7] |
ZHU Z, LI L X, YU Y N, et al. Distribution, source, risk and phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in typical urban landscape waters recharged by reclaimed water[J]. Journal of Environmental Management, 2023, 330: 117214. doi: 10.1016/j.jenvman.2023.117214
|
[8] |
AGHADADASHI V, MOLAEI S, MEHDINIA A, et al. Using GIS, geostatistics and Fuzzy logic to study spatial structure of sedimentary total PAHs and potential eco-risks; An Eastern Persian Gulf case study[J]. Marine Pollution Bulletin, 2019, 149: 110489. doi: 10.1016/j.marpolbul.2019.110489
|
[9] |
ZHAO H J, WANG Y, YANG L L, et al. Relationship between phytoplankton and environmental factors in landscape water supplemented with reclaimed water[J]. Ecological Indicators, 2015, 58: 113-121. doi: 10.1016/j.ecolind.2015.03.033
|
[10] |
王文君, 方艳红, 胡晓东. 大渡河河口浮游植物群落时空分布及其与环境因子的关系[J]. 水生态学杂志, 2019, 40(6): 16-23.
WANG W J, FANG Y H, HU X D. Spatio-temporal distribution of the phytoplankton community in Dadu River near angu reservoir and its relationship with environmental factors[J]. Journal of Hydroecology, 2019, 40(6): 16-23 (in Chinese).
|
[11] |
陈彦霖, 隋倩雯, 王拓, 等. 温度对序批式膜生物反应器生物脱氮影响及微生物机制解析[J]. 环境工程学报, 2021, 15(1): 65-73.
CHEN Y L, SUI Q W, WANG T, et al. Effects of temperature on biological nitrogen removal in batch membrane bioreactor and the microbial community mechanism[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 65-73 (in Chinese).
|
[12] |
SMITH C J, DONG L F, WILSON J, et al. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient[J]. Frontiers in Microbiology, 2015, 6: 542.
|
[13] |
GERONIMO F K F, MANIQUIZ-REDILLAS M C, KIM L H. Fate and removal of nutrients in bioretention systems[J]. Desalination and Water Treatment, 2015, 53(11): 3072-3079. doi: 10.1080/19443994.2014.922308
|
[14] |
刘明文, 孙昕, 李鹏飞, 等. 3种水生植物及其组合吸收去除水中氮磷的比较[J]. 环境工程学报, 2021, 15(4): 1289-1298.
LIU M W, SUN X, LI P F, et al. Comparison of the absorption and removal of nitrogen and phosphorus from waterbody by three aquatic plants and their combinations[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1289-1298 (in Chinese).
|
[15] |
LI J H, YANG X Y, WANG Z F, et al. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water[J]. Bioresource Technology, 2015, 179: 1-7. doi: 10.1016/j.biortech.2014.11.053
|
[16] |
TORRESI E, FOWLER S J, POLESEL F, et al. Biofilm thickness influencesiodiversity in nitrifying MBBRs-implications on micropollutant removal[J]. Environmental Science & Technology, 2016, 50(17): 9279-9288.
|
[17] |
LONG X E, CHEN C R, XU Z H, et al. Abundance and community structure of ammonia-oxidizing bacteria and Archaea in a temperate forest ecosystem under ten-years elevated CO2[J]. Soil Biology and Biochemistry, 2012, 46: 163-171. doi: 10.1016/j.soilbio.2011.12.013
|
[18] |
曲疆奇, 刘青, 张清靖, 等. 养殖尾水浮床处理系统水生植物根际细菌的氮循环作用机制[J]. 大连海洋大学学报, 2023, 38(1): 12-21.
QU J Q, LIU Q, ZHANG Q J, et al. Regulation of bacterial nitrogen cycle of aquatic plants rhizosphere in the ecological floating bed system for aquaculture tailwater treatment[J]. Journal of Dalian Ocean University, 2023, 38(1): 12-21 (in Chinese).
|
[19] |
陈帆帆, 王亚楠, 何圣兵. 不同盐沼湿地类型脱氮除磷效能及影响因素分析[J]. 水处理技术, 2021, 47(1): 95-99,105.
CHEN F F, WANG Y N, HE S B. Analysis on efficiency and the influencing factors of nitrogen and phosphorus removal in different salt marsh wetland types[J]. Technology of Water Treatment, 2021, 47(1): 95-99,105 (in Chinese).
|
[20] |
ZHU Z, WANG Z F, YU Y N, et al. Occurrence forms and environmental characteristics of phosphorus in water column and sediment of urban waterbodies replenished by reclaimed water[J]. The Science of the Total Environment, 2023, 888: 164069. doi: 10.1016/j.scitotenv.2023.164069
|
[21] |
JIANG M Q, ZHOU Y P, WANG N, et al. Allelopathic effects of harmful algal extracts and exudates on biofilms on leaves of Vallisneria natans[J]. Science of the Total Environment, 2019, 655: 823-830. doi: 10.1016/j.scitotenv.2018.11.296
|
[22] |
刘足根, 张萌, 李雄清, 等. 沉水-挺水植物镶嵌组合的水体氮磷去除效果研究[J]. 长江流域资源与环境, 2015, 24(增刊1): 171-181.
LIU Z G, ZHANG M, LI X Q, et al. Nitrogen and phosphorus removal of eutrophic water by the mosaic system of submerged-emerged plants[J]. Resources and Environment in the Yangtze Basin, 2015, 24(Sup 1): 171-181 (in Chinese).
|
[23] |
SANZ-LÁZARO C, VALDEMARSEN T, HOLMER M. Effects of temperature and organic pollution on nutrient cycling in marine sediments[J]. Biogeosciences, 2015, 12(15): 4565-4575. doi: 10.5194/bg-12-4565-2015
|
[24] |
WANG Y Z, LIU M Z, DAI Y, et al. Health and ecotoxicological risk assessment for human and aquatic organism exposure to polycyclic aromatic hydrocarbons in the Baiyangdian Lake[J]. Environmental Science and Pollution Research International, 2021, 28(1): 574-586. doi: 10.1007/s11356-020-10480-1
|
[25] |
王婷, 耿绍波, 常高峰. 人工湿地植物对生活污水净化作用的研究进展[J]. 环境科学与技术, 2013, 36(增刊1): 210-212, 227.
WANG T, GENG S B, CHANG G F. Advances in studies on the purification of artificial wetland plants for sanitary sewage[J]. Environmental Science & Technology, 2013, 36(Sup 1): 210-212, 227 (in Chinese).
|