[1] |
FARINOTTI D, HUSS M, FÜRST J J, et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth[J]. Nature Geoscience, 2019, 12(3): 168-173. doi: 10.1038/s41561-019-0300-3
|
[2] |
JIN H J, HE R X, CHENG G D, et al. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts[J]. Environmental Research Letters, 2009, 4(4): 045206. doi: 10.1088/1748-9326/4/4/045206
|
[3] |
IMMERZEEL W W, van BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385. doi: 10.1126/science.1183188
|
[4] |
ZHANG X Y, WANG Y Q, ZHANG X C, et al. Carbonaceous aerosol composition over various regions of China during 2006[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D14):doi:10.1029/2007JD009525.
|
[5] |
KASPARI S D, SCHWIKOWSKI M, GYSEL M, et al. Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860-2000 AD[J]. Geophysical Research Letters, 2011, 38(4),doi:10.1029/2007JD009525.
|
[6] |
CHEN P F, KANG S C, BAI J K, et al. Yak dung combustion aerosols in the Tibetan Plateau: Chemical characteristics and influence on the local atmospheric environment[J]. Atmospheric Research, 2015, 156: 58-66. doi: 10.1016/j.atmosres.2015.01.001
|
[7] |
WANG R, TAO S, WANG W T, et al. Black carbon emissions in China from 1949 to 2050[J]. Environmental Science & Technology, 2012, 46(14): 7595-7603.
|
[8] |
BOND T C, DOHERTY S J, FAHEY D W, et al. Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(11): 5380-5552. doi: 10.1002/jgrd.50171
|
[9] |
BOND T C, ZARZYCKI C, FLANNER M G, et al. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse[J]. Atmospheric Chemistry and Physics, 2011, 11(4): 1505-1525. doi: 10.5194/acp-11-1505-2011
|
[10] |
QU B, MING J, KANG S C, et al. The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 11117-11128. doi: 10.5194/acp-14-11117-2014
|
[11] |
CUI X J, WANG X F, YANG L X, et al. Radiative absorption enhancement from coatings on black carbon aerosols[J]. Science of the Total Environment, 2016, 551/552: 51-56. doi: 10.1016/j.scitotenv.2016.02.026
|
[12] |
ZHANG Y L, GAO T G, KANG S C, et al. Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas[J]. Earth-Science Reviews, 2021, 220: 103735. doi: 10.1016/j.earscirev.2021.103735
|
[13] |
姜璐, 邢冉, 陈兴鹏, 等. 青藏高原农区农户的家庭能源消费研究[J]. 地理科学, 2020, 40(3): 447-454.
JIANG L, XING R, CHEN X P, et al. Rural household energy consumption of farmers in the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 2020, 40(3): 447-454 (in Chinese).
|
[14] |
LIU H K, WANG Q Y, XING L, et al. Measurement report: Quantifying source contribution of fossil fuels and biomass-burning black carbon aerosol in the southeastern margin of the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2021, 21(2): 973-987. doi: 10.5194/acp-21-973-2021
|
[15] |
YANG J H, KANG S C, JI Z M. Critical contribution of South Asian residential emissions to atmospheric black carbon over the Tibetan Plateau[J]. The Science of the Total Environment, 2020, 709: 135923. doi: 10.1016/j.scitotenv.2019.135923
|
[16] |
TIAN J E, CHOW J C, CAO J J, et al. A biomass combustion chamber: Design, evaluation, and a case study of wheat straw combustion emission tests[J]. Aerosol and Air Quality Research, 2015, 15(5): 2104-2114. doi: 10.4209/aaqr.2015.03.0167
|
[17] |
CAO J J, WANG Q Y, LI L, et al. Evaluation of the Oxidation Flow Reactor for particulate matter emission limit certification[J]. Atmospheric Environment, 2020, 224: 117086. doi: 10.1016/j.atmosenv.2019.117086
|
[18] |
LI L, HUANG Z X, DONG J G, et al. Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles[J]. International Journal of Mass Spectrometry, 2011, 303(2/3): 118-124.
|
[19] |
WANG H L, AN J L, SHEN L J, et al. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry[J]. Atmospheric Environment, 2016, 132: 123-132. doi: 10.1016/j.atmosenv.2016.02.032
|
[20] |
SONG X H, HOPKE P K, FERGENSON D P, et al. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A[J]. Analytical Chemistry, 1999, 71(4): 860-865. doi: 10.1021/ac9809682
|
[21] |
ZHANG X H, XU J Z, ZHAI L X, et al. Characterization of aerosol properties from the burning emissions of typical residential fuels on the Tibetan Plateau[J]. Environmental Science & Technology, 2022, 56(20): 14296-14305.
|
[22] |
HEALY R M, HELLEBUST S, KOURTCHEV I, et al. Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements[J]. Atmospheric Chemistry and Physics, 2010, 10(19): 9593-9613. doi: 10.5194/acp-10-9593-2010
|
[23] |
CHRISTENSEN K A, STENHOLM M, LIVBJERG H. The formation of submicron aerosol particles, HCl and SO2 in straw-fired boilers[J]. Journal of Aerosol Science, 1998, 29(4): 421-444. doi: 10.1016/S0021-8502(98)00013-5
|
[24] |
LIANG Z C, ZHOU L Y, INFANTE CUEVAS R A, et al. Sulfate formation in incense burning particles: A single-particle mass spectrometric study[J]. Environmental Science & Technology Letters, 2022, 9(9): 718-725.
|
[25] |
HUO J T, LU X H, WANG X N, et al. Online single particle analysis of chemical composition and mixing state of crop straw burning particles: From laboratory study to field measurement[J]. Frontiers of Environmental Science & Engineering, 2016, 10(2): 244-252.
|
[26] |
KANG E, LEE M, BRUNE W, et al. Photochemical aging of organic and inorganic ambient aerosol from the Potential Aerosol Mass (PAM) reactor experiment in East Asia[J]. Atmospheric Chemistry and Physics, 2017,DOI:10.5194/acp-2016-1133
|
[27] |
GUO X, WANG X Q, DAI W T, et al. Effects of atmospheric aging processes on carbonaceous species and water-soluble inorganic ions in biomass burning aerosols[J]. Atmospheric Environment, 2022, 288: 119322. doi: 10.1016/j.atmosenv.2022.119322
|
[28] |
SUN J X, SUN Y L, XIE C H, et al. The chemical composition and mixing state of BC-containing particles and the implications on light absorption enhancement[J]. Atmospheric Chemistry and Physics, 2022, 22(11): 7619-7630. doi: 10.5194/acp-22-7619-2022
|
[29] |
MOFFET R C, de FOY B, MOLINA L T, et al. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry[J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4499-4516. doi: 10.5194/acp-8-4499-2008
|
[30] |
LIN Q H, BI X H, ZHANG G H, et al. In-cloud formation of secondary species in iron-containing particles[J]. Atmospheric Chemistry and Physics, 2019, 19(2): 1195-1206. doi: 10.5194/acp-19-1195-2019
|
[31] |
牟莹莹, 楼晟荣, 陈长虹, 等. 利用SPAMS研究上海秋季气溶胶污染过程中颗粒物的老化与混合状态[J]. 环境科学, 2013, 34(6): 2071-2080.
MU Y Y, LOU S R, CHEN C H, et al. Aging and mixing state of particulate matter during aerosol pollution episode in autumn Shanghai using a single particle aerosol mass spectrometer (SPAMS)[J]. Environmental Science, 2013, 34(6): 2071-2080(in Chinese).
|
[32] |
LI L, WANG Q Y, ZHANG Y, et al. Impact of reduced anthropogenic emissions on chemical characteristics of urban aerosol by individual particle analysis[J]. Chemosphere, 2022, 303: 135013. doi: 10.1016/j.chemosphere.2022.135013
|
[33] |
QI X, ZHU S P, ZHU C Z, et al. Smog chamber study of the effects of NO x and NH3 on the formation of secondary organic aerosols and optical properties from photo-oxidation of toluene[J]. Science of the Total Environment, 2020, 727: 138632. doi: 10.1016/j.scitotenv.2020.138632
|
[34] |
张颖, 孔少飞, 郑煌, 等. 牛粪燃烧实时排放挥发性有机物特征研究[J]. 中国环境科学, 2020, 40(5): 1932-1939.
ZHANG Y, KONG S F, ZHENG H, et al. Real-time emission of volatile organic compounds from cow dung combustion[J]. China Environmental Science, 2020, 40(5): 1932-1939 (in Chinese).
|
[35] |
WANG G H, CHENG C L, MENG J J, et al. Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface[J]. Atmospheric Environment, 2015, 113: 169-176. doi: 10.1016/j.atmosenv.2015.05.013
|
[36] |
WANG G H, KAWAMURA K, CHENG C L, et al. Molecular distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in size-resolved atmospheric particles from Xi'an City, China[J]. Environmental Science & Technology, 2012, 46(9): 4783-4791.
|
[37] |
CHENG C L, LI M, CHAN C K, et al. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: Implications for the formation mechanism of oxalic acid[J]. Atmospheric Chemistry and Physics, 2017, 17(15): 9519-9533. doi: 10.5194/acp-17-9519-2017
|
[38] |
LI M, BAO F X, ZHANG Y, et al. Photochemical aging of soot in the aqueous phase: Release of dissolved black carbon and the formation of 1O2[J]. Environmental Science & Technology, 2019, 53(21): 12311-12319.
|
[39] |
LI M, BAO F X, ZHANG Y, et al. Role of elemental carbon in the photochemical aging of soot[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(30): 7717-7722.
|
[40] |
ZHANG G H, FU Y Z, PENG X C, et al. Black carbon involved photochemistry enhances the formation of sulfate in the ambient atmosphere: Evidence from in situ individual particle investigation[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(19), doi. org/10.1029/2021JD035226.
|