[1] XUE P Y, ZHAO Q L, SUN H X, et al. Characteristics of heavy metals in soils and grains of wheat and maize from farmland irrigated with sewage[J]. Environmental Science and Pollution Research, 2019, 26(6): 5554-5563. doi: 10.1007/s11356-018-3997-4
[2] AHADO S K, NWAOGU C, SARKODIE V Y O, et al. Modeling and assessing the spatial and vertical distributions of potentially toxic elements in soil and how the concentrations differ[J]. Toxics, 2021, 9(8): 181. doi: 10.3390/toxics9080181
[3] U. S. EPA. EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide[R]. U. S. Environmental Protection Agency, 2014, EPA/600/R-14/108.
[4] JADOON S, MUHAMMAD S, HILAL Z, et al. Spatial distribution of potentially toxic elements in urban soils of Abbottabad city, (N Pakistan): Evaluation for potential risk[J]. Microchemical Journal, 2020, 153: 104489. doi: 10.1016/j.microc.2019.104489
[5] MOGHTADERI T, SHAKERI A, RODRÍGUEZ-SEIJO A. Potentially toxic element content in arid agricultural soils in South Iran[J]. Agronomy, 2020, 10(4): 564. doi: 10.3390/agronomy10040564
[6] CHEN H Y, TENG Y G, LU S J, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512/513: 143-153. doi: 10.1016/j.scitotenv.2015.01.025
[7] 程志中, 谢学锦. 中国西南地区76种元素地球化学填图[J]. 物探化探计算技术, 2007, 29(增刊1): 174-179, 7, 6. CHENG Z Z, XIE X J. Geochemical mapping for 76 elements in southwest China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(Sup 1): 174-179, 7, 6 (in Chinese).
[8] 秦元礼, 张富贵, 彭敏, 等. 云南省武定县土壤重金属地球化学分布特征及其来源浅析[J]. 地质与勘探, 2020, 56(3): 540-550. QIN Y L, ZHANG F G, PENG M, et al. Geochemical distribution characteristics and sources of heavy metals in soils of Wuding County, Yunnan Province[J]. Geology and Exploration, 2020, 56(3): 540-550 (in Chinese).
[9] 肖高强, 陈杰, 白兵, 等. 云南典型地质高背景区土壤重金属含量特征及污染风险评价[J]. 地质与勘探, 2021, 57(5): 1077-1086. XIAO G Q, CHEN J, BAI B, et al. Content characteristics and risk assessment of heavy metals in soil of typical high geological background areas, Yunnan Province[J]. Geology and Exploration, 2021, 57(5): 1077-1086 (in Chinese).
[10] ZHANG S, SONG J. Geochemical cadmium anomaly and bioaccumulation of cadmium and lead by rapeseed (Brassica napus L. ) from noncalcareous soils in the Guizhou Plateau[J]. Science of the Total Environment, 2018, 644: 624-634. doi: 10.1016/j.scitotenv.2018.06.230
[11] CHAI Y, GUO J, CHAI S L, et al. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China[J]. Chemosphere, 2015, 134: 67-75. doi: 10.1016/j.chemosphere.2015.04.008
[12] HUANG J H, GUO S T, ZENG G M, et al. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use[J]. Environmental Pollution, 2018, 243: 49-58. doi: 10.1016/j.envpol.2018.08.038
[13] 柴磊, 王新, 马良, 等. 基于PMF模型的兰州耕地土壤重金属来源解析[J]. 中国环境科学, 2020, 40(9): 3919-3929. doi: 10.3969/j.issn.1000-6923.2020.09.025 CHAI L, WANG X, MA L, et al. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models[J]. China Environmental Science, 2020, 40(9): 3919-3929 (in Chinese). doi: 10.3969/j.issn.1000-6923.2020.09.025
[14] YU E J, LIU H Y, DINIS F, et al. Contamination evaluation and source analysis of heavy metals in Karst soil using UNMIX model and Pb-Cd isotopes[J]. International Journal of Environmental Research and Public Health, 2022, 19(19): 12478. doi: 10.3390/ijerph191912478
[15] CHEN Z F, DING Y F, JIANG X Y, et al. Combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions for quantitative source apportionment of heavy metals in suburban agricultural soils[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113369. doi: 10.1016/j.ecoenv.2022.113369
[16] ISLAM M S, AHMED M K, RAKNUZZAMAN M, et al. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country[J]. Ecological Indicators, 2015, 48: 282-291. doi: 10.1016/j.ecolind.2014.08.016
[17] FUKUE M, YANAI M, SATO Y, et al. Background values for evaluation of heavy metal contamination in sediments[J]. Journal of Hazardous Materials, 2006, 136(1): 111-119.
[18] ANGULO E. The Tomlinson Pollution Load Index applied to heavy metal, ‘Mussel-Watch’ data: A useful index to assess coastal pollution[J]. Science of the Total Environment, 1996, 187(1): 19-56. doi: 10.1016/0048-9697(96)05128-5
[19] DHAMODHARAN A, ABINANDAN S, ARAVIND U, et al. Distribution of metal contamination and risk indices assessment of surface sediments from cooum river, Chennai, India[J]. International Journal of Environmental Research, 2019, 13(5): 853-860. doi: 10.1007/s41742-019-00222-8
[20] LIU R, WANG M E, CHEN W P, et al. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors[J]. Environmental Pollution, 2016, 210: 174-181. doi: 10.1016/j.envpol.2015.11.044
[21] LIU D X, MA J H, SUN Y L, et al. Spatial distribution of soil magnetic susceptibility and correlation with heavy metal pollution in Kaifeng City, China[J]. CATENA, 2016, 139: 53-60. doi: 10.1016/j.catena.2015.11.004
[22] MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118.
[23] 余飞, 张永文, 严明书, 等. 重庆汞矿区耕地土壤和农作物重金属污染状况及健康风险评价[J]. 环境化学, 2022, 41(2): 536-548. doi: 10.7524/j.issn.0254-6108.2020101302 YU F, ZHANG Y W, YAN M S, et al. Heavy metal pollution and human health risks assessment of soil and crops near the mercury ore in Chongqing[J]. Environmental Chemistry, 2022, 41(2): 536-548 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020101302
[24] WU J N, LONG J, LIU L F, et al. Risk assessment and source identification of toxic metals in the agricultural soil around a Pb/Zn mining and smelting area in southwest China[J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 1838. doi: 10.3390/ijerph15091838
[25] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. China National Environmental Monitoring Station. Soil elemental background values in China[M]. Beijing: China Environmental Science Press, 1990(in Chinese).
[26] 耿源濛, 张传兵, 张勇, 等. 我国城市污泥中重金属的赋存形态与生态风险评价[J]. 环境科学, 2021, 42(10): 4834-4843. GENG Y M, ZHANG C B, ZHANG Y, et al. Speciation and ecological risk assessment of heavy metal(loid)s in the municipal sewage sludge of China[J]. Environmental Science, 2021, 42(10): 4834-4843 (in Chinese).
[27] 吴静, 方凤满, 马康, 等. 基于Unmix模型的庐江县土壤重金属空间分布和来源解析[J]. 生态与农村环境学报, 2022, 38(9): 1204-1210. WU J, FANG F M, MA K, et al. Spatial distribution and source analysis of soil heavy metals in Lujiang County based on unmix model[J]. Journal of Ecology and Rural Environment, 2022, 38(9): 1204-1210 (in Chinese).
[28] 蔡昂祖, 张海霞, 王小剑, 等. Unmix模型污染源解析研究进展及应用前景[J]. 土壤通报, 2021, 52(3): 747-756. CAI A Z, ZHANG H X, WANG X J, et al. Review on the pollution source apportionment by unmix model and application prospect[J]. Chinese Journal of Soil Science, 2021, 52(3): 747-756 (in Chinese).
[29] SAWUT R, KASIM N, MAIHEMUTI B, et al. Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China[J]. Science of the Total Environment, 2018, 642: 864-878. doi: 10.1016/j.scitotenv.2018.06.034
[30] 成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019, 26(6): 159-191. CHENG H X, PENG M, ZHAO C D, et al. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil, Southwest China[J]. Earth Science Frontiers, 2019, 26(6): 159-191 (in Chinese).
[31] 李丽辉, 王宝禄. 云南省土壤As、Cd元素地球化学特征[J]. 物探与化探, 2008, 32(5): 497-501. LI L H, WANG B L. Geochemical characteristics of as and cd in soils of Yunnan Province[J]. Geophysical and Geochemical Exploration, 2008, 32(5): 497-501 (in Chinese).
[32] 苗亦新. 罗平地区炼锌废渣土壤重金属污染风险及稳定化实验[D]. 徐州: 中国矿业大学, 2017. MIAO Y X. The risk of heavy metals pollution and laboratory study on stabilization for zinc residue in Luoping area[D]. Xuzhou: China University of Mining and Technology, 2017 (in Chinese).
[33] 涂春霖, 马一奇, 令狐昌卫, 等. 滇东高原煤矿聚集区扎外河流域水化学特征及演化规律[J]. 科学技术与工程, 2021, 21(29): 12470-12480. TU C L, MA Y Q, LINGHU C W, et al. Hydro-chemical characteristics and evolution of Zhawai river basin in coal mining area of eastern Yunnan plateau[J]. Science Technology and Engineering, 2021, 21(29): 12470-12480(in Chinese)
[34] LI N, LI Y, WANG G M, et al. The sources risk assessment combined with APCS/MLR model for potentially toxic elements in farmland of a first-tier city, China[J]. Environmental Science and Pollution Research International, 2022, 29(33): 50717-50726. doi: 10.1007/s11356-022-19325-5
[35] 宁翠萍, 李国琛, 王颜红, 等. 细河流域农田土壤重金属污染评价及来源解析[J]. 农业环境科学学报, 2017, 36(3): 487-495. doi: 10.11654/jaes.2016-1222 NING C P, LI G C, WANG Y H, et al. Evaluation and source apportionment of heavy metal pollution in Xihe watershed farmland soil[J]. Journal of Agro-Environment Science, 2017, 36(3): 487-495 (in Chinese). doi: 10.11654/jaes.2016-1222
[36] MILENKOVIC B, STAJIC J M, GULAN L, et al. Radioactivity levels and heavy metals in the urban soil of Central Serbia[J]. Environmental Science and Pollution Research, 2015, 22(21): 16732-16741. doi: 10.1007/s11356-015-4869-9
[37] PANT P, HARRISON R M. Critical review of receptor modelling for particulate matter: A case study of India[J]. Atmospheric Environment, 2012, 49: 1-12. doi: 10.1016/j.atmosenv.2011.11.060
[38] DUONG T T T, LEE B K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics[J]. Journal of Environmental Management, 2011, 92(3): 554-562. doi: 10.1016/j.jenvman.2010.09.010
[39] 陈锦芳, 方宏达, 巫晶晶, 等. 基于PMF和Pb同位素的农田土壤中重金属分布及来源解析[J]. 农业环境科学学报, 2019, 38(5): 1026-1035. doi: 10.11654/jaes.2018-1170 CHEN J F, FANG H D, WU J J, et al. Distribution and source apportionment of heavy metals in farmland soils using PMF and lead isotopic composition[J]. Journal of Agro-Environment Science, 2019, 38(5): 1026-1035 (in Chinese). doi: 10.11654/jaes.2018-1170
[40] 韩志轩, 王学求, 迟清华, 等. 珠江三角洲冲积平原土壤重金属元素含量和来源解析[J]. 中国环境科学, 2018, 38(9): 3455-3463. doi: 10.3969/j.issn.1000-6923.2018.09.032 HAN Z X, WANG X Q, CHI Q H, et al. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region, South China[J]. China Environmental Science, 2018, 38(9): 3455-3463 (in Chinese). doi: 10.3969/j.issn.1000-6923.2018.09.032
[41] 冯云刚, 朱琨, 张伟. 砷对土壤的污染及生物修复技术[J]. 河南农业, 2008(1): 22-23. FENG Y G, ZHU K, ZHANG W. Arsenic pollution to soil and bioremediation technology[J]. Agriculture of Henan, 2008(1): 22-23 (in Chinese).
[42] 霍明珠, 高秉博, 乔冬云, 等. 基于APCS-MLR受体模型的农田土壤重金属源解析[J]. 农业环境科学学报, 2021, 40(5): 978-986. HUO M Z, GAO B B, QIAO D Y, et al. Source apportionment of heavy metals in farmland soil based on the APCS-MLR model[J]. Journal of Agro-Environment Science, 2021, 40(5): 978-986 (in Chinese).
[43] 马杰, 沈智杰, 张萍萍, 等. 基于APCS-MLR和PMF模型的煤矸山周边耕地土壤重金属污染特征及源解析[J]. 环境科学, 2023, 44(4): 2192-2203. MA J, SHEN Z J, ZHANG P P, et al. Pollution characteristics and source apportionment of heavy metals in farmland soils around the gangue heap of coal mine based on APCS-MLR and PMF receptor model[J]. Environmental Science, 2023, 44(4): 2192-2203 (in Chinese).
[44] 孟利, 左锐, 王金生, 等. 基于PCA-APCS-MLR的地下水污染源定量解析研究[J]. 中国环境科学, 2017, 37(10): 3773-3786. doi: 10.3969/j.issn.1000-6923.2017.10.020 MENG L, ZUO R, WANG J S, et al. Quantitative source apportionment of groundwater pollution based on PCA-APCS-MLR[J]. China Environmental Science, 2017, 37(10): 3773-3786 (in Chinese). doi: 10.3969/j.issn.1000-6923.2017.10.020
[45] 尚婷婷, 张亚群, 周静, 等. 白银市城郊周边农田土壤重金属污染特征及来源解析[J]. 环境生态学, 2023, 5(4): 19-26. SHANG T T, ZHANG Y Q, ZHOU J, et al. Pollution characteristics and source apportionment of heavy metals in farmland soil, Baiyin suburb[J]. Environmental Ecology, 2023, 5(4): 19-26 (in Chinese).
[46] 张扣扣, 贺婧, 钟艳霞, 等. 基于GIS对宁夏某铜银矿区周边土壤重金属来源解析[J]. 环境科学, 2022, 43(11): 5192-5204. ZHANG K K, HE J, ZHONG Y X, et al. Identification of soil heavy metal sources around a copper-silver mining area in Ningxia based on GIS[J]. Environmental Science, 2022, 43(11): 5192-5204 (in Chinese).
[47] LIU Y M, LIU D Y, ZHANG W, et al. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers[J]. Environmental Pollution, 2020, 257: 113581. doi: 10.1016/j.envpol.2019.113581
[48] NEGAHBAN S, MOKARRAM M. Potential ecological risk assessment of Ni, Cu, Zn, Cd, and Pb in roadside soils[J]. Earth and Space Science, 2021, 8(4),DOI:10.1029/2020EA001120.
[49] ZHOU M, LIAO B, SHU W S, et al. Pollution assessment and potential sources of heavy metals in agricultural soils around four Pb/Zn mines of Shaoguan city, China[J]. Soil and Sediment Contamination:an International Journal, 2015, 24(1): 76-89. doi: 10.1080/15320383.2014.914152
[50] FEI X F, LOU Z H, XIAO R, et al. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models[J]. Science of the Total Environment, 2020, 747: 141293. doi: 10.1016/j.scitotenv.2020.141293
[51] 何梦媛, 董同喜, 茹淑华, 等. 畜禽粪便有机肥中重金属在土壤剖面中积累迁移特征及生物有效性差异[J]. 环境科学, 2017, 38(4): 1576-1586. HE M Y, DONG T X, RU S H, et al. Accumulation and migration characteristics in soil profiles and bioavailability of heavy metals from livestock manure[J]. Environmental Science, 2017, 38(4): 1576-1586 (in Chinese).
[52] GUAN Q Y, ZHAO R, PAN N H, et al. Source apportionment of heavy metals in farmland soil of Wuwei, China: Comparison of three receptor models[J]. Journal of Cleaner Production, 2019, 237: 117792. doi: 10.1016/j.jclepro.2019.117792
[53] CALLÉN M S, deLa CRUZ M T, LÓPEZ J M, et al. Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain)[J]. Chemosphere, 2009, 76(8): 1120-1129. doi: 10.1016/j.chemosphere.2009.04.015
[54] WANG J H, WU H H, WEI W X, et al. Health risk assessment of heavy metal(loid)s in the farmland of megalopolis in China by using APCS-MLR and PMF receptor models: Taking Huairou District of Beijing as an example[J]. Science of the Total Environment, 2022, 835: 155313. doi: 10.1016/j.scitotenv.2022.155313
[55] JIN Z, LV J S. Integrated receptor models and multivariate geostatistical simulation for source apportionment of potentially toxic elements in soils[J]. CATENA, 2020, 194: 104638. doi: 10.1016/j.catena.2020.104638
[56] 段海静, 马嘉玉, 彭超月, 等. 基于APCS-MLR和PMF模型解析黄河下游文化公园土壤重金属污染特征及来源分析[J]. 环境科学, 2023, 44(8): 4406-4415. DUAN H J, MA J Y, PENG C Y, et al. Pollution characteristics and source analysis of heavy metals in soils in Yellow River cultural park based on APCS-MLR and PMF receptor model[J]. Environmental Science, 2023, 44(8): 4406-4415 (in Chinese).
[57] 邓晓茜, 毛龙江, 蔡於杞, 等. 基于APCS-MLR和PMF模型的海州湾沉积物重金属污染特征与来源研究[J]. 海洋环境科学, 2023, 42(3): 387-395. doi: 10.12111/j.mes.2022-x-0215 DENG X Q, MAO L J, CAI Y Q, et al. Characteristics and source analysis of heavy metals pollution from core sediments in Haizhou Bay based on APCS-MLR and PMF model[J]. Marine Environmental Science, 2023, 42(3): 387-395 (in Chinese). doi: 10.12111/j.mes.2022-x-0215