[1] |
TEW K, FETTER CW, BOVING T, et al. Contaminant Hydrogeology[J]. Environmental Earth Sciences, 2018, 77(22): 745. doi: 10.1007/s12665-018-7921-5
|
[2] |
CHEN Q, FAN G, NA W, et al. Past, present, and future of groundwater remediation research: A scientometric analysis[J]. International Journal of Environmental Research and Public Health, 2019, 16(20): 3975. doi: 10.3390/ijerph16203975
|
[3] |
AL-HASHIMI O A, HASHIM K, LOFFILL E, et al. A comprehensive review for groundwater contamination and remediation: Occurrence, migration and adsorption modelling[J]. Molecules, 2021, 26: 5913. doi: 10.3390/molecules26195913
|
[4] |
HASHIM M A, MUKHOPADHYAY S, SAHU J N, et al. Remediation technologies for heavy metal contaminated groundwater[J]. Journal of Environmental Management, 2011, 92(10): 2355-2388. doi: 10.1016/j.jenvman.2011.06.009
|
[5] |
CIAMPI P, ESPOSITO C, PETRANGELI PAPINI M. Review on groundwater circulation wells (GCWs) for aquifer remediation: State of the art, challenges, and future prospects[J]. Groundwater for Sustainable Development, 2024, 24: 101068. doi: 10.1016/j.gsd.2023.101068
|
[6] |
KALHOR K, GHASEMIZADEH R, RAJIC L, et al. Assessment of groundwater quality and remediation in karst aquifers: A review[J]. Groundwater for Sustainable Development, 2019, 8: 104-121. doi: 10.1016/j.gsd.2018.10.004
|
[7] |
CHEN C, SIE Y, LIN Y. A review of the multilevel slug test for characterizing aquifer heterogeneity[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2012, 23: 131. doi: 10.3319/TAO.2011.10.03.01(Hy)
|
[8] |
费宇红, 刘雅慈, 李亚松, 等. 中国地下水污染修复方法和技术应用展望[J]. 中国地质, 2022, 49(2): 420-434.
|
[9] |
TENNEY C M, LASTOSKIE C M, DYBAS M J. A reactor model for pulsed pumping groundwater remediation[J]. Water Research, 2004, 38(18): 3869-3880. doi: 10.1016/j.watres.2004.06.029
|
[10] |
KAHLER D M, KABALA Z. Rapidly pulsed pumping accelerates remediation in a vertical circulation well model[J]. Water, 2018, 10: 1423. doi: 10.3390/w10101423
|
[11] |
王海鑫, 王水, 吕宗祥, 等. 一种滴灌式自动注入土壤地下水原位修复药剂注入工艺及装置: ZL202310047333.9[P]. 2023-05-02.
|
[12] |
MUKHOPADHYAY A, DUTTAGUPTA S, MUKHERJEE A. Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107560. doi: 10.1016/j.jece.2022.107560
|
[13] |
MAJONE M, VERDINI R, AULENTA F, et al. In situ groundwater and sediment bioremediation: Barriers and perspectives at European contaminated sites[J]. New Biotechnology, 2015, 32(1): 133-146. doi: 10.1016/j.nbt.2014.02.011
|
[14] |
NEWELL C J, ADAMSON D T, KULKARNI P R, et al. Monitored natural attenuation to manage PFAS impacts to groundwater: Scientific basis[J]. Groundwater Monitoring & Remediation, 2021, 41(4): 76-89.
|
[15] |
BRUSSEAU M L, GUO Z. Assessing contaminant-removal conditions and plume persistence through analysis of data from long-term pump-and-treat operations[J]. Journal of Contaminant Hydrology, 2014, 164: 16-24. doi: 10.1016/j.jconhyd.2014.05.004
|
[16] |
RIVETT M O, CHAPMAN S W, ALLEN-KING R M, et al. Pump-and-Treat remediation of chlorinated solvent contamination at a controlled Field-Experiment site[J]. Environmental Science & Technology, 2006, 40(21): 6770-6781.
|
[17] |
GUO Z, BRUSSEAU M L, FOGG G E. Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume[J]. Journal of Hazardous Materials, 2019, 365: 796-803. doi: 10.1016/j.jhazmat.2018.11.057
|
[18] |
蒲生彦. 地下水环境调查评估与污染防治分区理论及实践[M]. 北京: 科学出版社, 2023.
|
[19] |
NASERI-RAD M, BERNDTSSON R, MCKNIGHT U S, et al. INSIDE-T: A groundwater contamination transport model for sustainability assessment in remediation practice[J]. Sustainability, 2021, 13(14): 7596. doi: 10.3390/su13147596
|
[20] |
PIERRO L, MATTURRO B, ROSSETTI S, et al. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field[J]. New Biotechnology, 2017, 37: 60-68. doi: 10.1016/j.nbt.2016.11.004
|
[21] |
TATTI F, PETRANGELI PAPINI M, TORRETTA V, et al. Experimental and numerical evaluation of Groundwater Circulation Wells as a remediation technology for persistent, low permeability contaminant source zones[J]. Journal of Contaminant Hydrology, 2019, 222: 89-100. doi: 10.1016/j.jconhyd.2019.03.001
|
[22] |
PAPINI M, MAJONE M, ARJMAND F, et al. First pilot test on the integration of GCW (Groundwater circulation well) with ENA (Enhanced natural attenuation) for chlorinated solvents source remediation[J]. Chemical Engineering Transactions, 2016, 49: 91-96.
|
[23] |
ELMORE A C, DEANGELIS L. Modeling a ground water circulation well alternative[J]. Groundwater Monitoring & Remediation, 2004, 24(1): 66-73.
|
[24] |
AKBARPOUR A, ZEYNALI M J, NAZERI TAHROUDI M. Locating optimal position of pumping wells in aquifer using Meta-Heuristic algorithms and finite element method[J]. Water Resources Management, 2020, 34(1): 21-34. doi: 10.1007/s11269-019-02386-6
|
[25] |
任丽霞. 地下水修复多属性决策分析方法与应用研究[D]. 北京: 华北电力大学, 2017.
|
[26] |
PARKER J, KIM U, KITANIDIS P, et al. Stochastic cost optimization of DNAPL remediation-Method description and sensitivity study[J]. Environmental Modelling & Software, 2012, 38: 74-88.
|
[27] |
ZHAO B, SUN Z, LIU Y. An overview of in-situ remediation for nitrate in groundwater[J]. Science of the Total Environment, 2022, 804: 149981. doi: 10.1016/j.scitotenv.2021.149981
|
[28] |
YUAN L, WANG K, ZHAO Q, et al. An overview of in situ remediation for groundwater co-contaminated with heavy metals and petroleum hydrocarbons[J]. Journal of Environmental Management, 2024, 349: 119342. doi: 10.1016/j.jenvman.2023.119342
|
[29] |
SEOL Y, ZHANG H, SCHWARTZ F. A review of in situ chemical oxidation and heterogeneity[J]. Environmental & Engineering Geoscience, 2003, 9: 37-49.
|
[30] |
GULERIA A, GUPTA P K, CHAKMA S, et al. Unraveling the fate and transport of DNAPLs in heterogeneous aquifer systems—A critical review and bibliometric analysis[J]. Sustainability, 2023, 15(10): 8214. doi: 10.3390/su15108214
|
[31] |
KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2): 95-122.
|
[32] |
KUPPUSAMY S, PALANISAMI T, MALLAVARAPU M, et al. In-Situ remediation approaches for the management of contaminated sites: A comprehensive overview[J]. Reviews of environmental contamination and toxicology, 2016, 236: 1-115.
|
[33] |
REDDY K R, KOSGI S, ZHOU J. A review of In-Situ air sparging for the remediation of VOC-Contaminated saturated soils and groundwater[J]. Hazardous Waste and Hazardous Materials, 1995, 12(2): 97-118. doi: 10.1089/hwm.1995.12.97
|
[34] |
陈勉力, 雷国元, 周达, 等. 空气流体振荡提升曝气溶氧效率的效果及机制[J]. 化工环保, 2023, 43(3): 324-330. doi: 10.3969/j.issn.1006-1878.2023.03.007
|
[35] |
王兵, 师雯, 孙玉波, 等. 陶瓷膜曝气强化臭氧传质研究[J]. 水处理技术, 2022, 48(3): 61-64+69.
|
[36] |
裘英华, 高梓浩, 王昊诚. 一种微纳米气泡制备装置及方法: ZL202210973287.0[P]. 2022-11-15.
|
[37] |
XU W, LI W, WANG J, et al. Numerical simulation of gas–liquid Two-Phase flow CFD-PBM model in a micro–nanobubble generator[J]. Minerals, 2022, 12(10): 1270. doi: 10.3390/min12101270
|
[38] |
SHENG G, JOHNSTON C T, TEPPEN B J, et al. Potential contributions of smectite clays and organic matter to pesticide retention in soils[J]. Journal of Agricultural and Food Chemistry, 2001, 49(6): 2899-2907. doi: 10.1021/jf001485d
|
[39] |
QIN C, ZHAO Y, ZHENG W, et al. Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction[J]. Journal of Hazardous Materials, 2010, 176(1): 294-299.
|
[40] |
XU L, ZHU L. Structures of OTMA-and DODMA-bentonite and their sorption characteristics towards organic compounds[J]. Journal of Colloid and Interface Science, 2009, 331(1): 8-14. doi: 10.1016/j.jcis.2008.11.030
|
[41] |
BALDWIN B R, NAKATSU C H, NEBE J, et al. Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site[J]. Journal of Hazardous Materials, 2009, 163(2): 524-530.
|
[42] |
申家宁, 晏井春 , 高卫国, 等. 多相抽提技术在化工污染地块修复中的应用潜力[J]. 环境工程学报, 2021, 15(10): 3286-3296.
|
[43] |
陈窈君. 多相抽提-原位化学氧化协同修复技术研究[J]. 环境科学与技术, 2023, 46(02): 1-9.
|
[44] |
戴昕, 刘军, 赵慧慧, 等. 受LNAPL污染地下水的AS/MPE联用修复系统及方法: ZL202010926050.8 [P]. 2020-12-29.
|
[45] |
CUI Y, ZHU Q, WEN Z. An improved sharp interface model for characterizing the transport and extraction of subsurface LNAPL[J]. Journal of Hydrology, 2023, 622: 129664. doi: 10.1016/j.jhydrol.2023.129664
|
[46] |
WEI K, MA J, XI B, et al. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738. doi: 10.1016/j.jhazmat.2022.128738
|
[47] |
FAN S, XIN J, HUANG J, et al. Effectiveness of electron transfer and electron competition mechanism in Zero-Valent Iron-Based reductive groundwater remediation systems[J]. Progress in Chemistry, 2018, 30: 1035-1046.
|
[48] |
RANC B, FAURE P, CROZE V, et al. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2016, 312: 280-297. doi: 10.1016/j.jhazmat.2016.03.068
|
[49] |
严梓辰, 余海波, 唐伟, 等. 基于文献计量分析的场地化学氧化修复技术研究热点和趋势[J]. 环境工程学报, 2023, 17(10): 3423-3433. doi: 10.12030/j.cjee.202307100
|
[50] |
STROO H F, LEESON A, MARQUSEE J A, et al. Chlorinated ethene source remediation: Lessons learned[J]. Environmental Science & Technology, 2012, 46(12): 6438-6447.
|
[51] |
ZHAO G, SHENG Y, WANG C, et al. In situ microbial remediation of crude oil-soaked marine sediments using zeolite carrier with a polymer coating[J]. Marine Pollution Bulletin, 2018, 129(1): 172-178. doi: 10.1016/j.marpolbul.2018.02.030
|
[52] |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9
|
[53] |
ANNESER B, PILLONI G, BAYER A, et al. High resolution analysis of contaminated aquifer sediments and groundwater-what can be learned in terms of natural attenuation?[J]. Geomicrobiology Journal, 2010, 27: 130-142. doi: 10.1080/01490450903456723
|
[54] |
KHAN M A, SHARMA A, YADAV S, et al. Enhancing remediation of RDX-contaminated soil by introducing microbial formulation technology coupled with biostimulation[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106019. doi: 10.1016/j.jece.2021.106019
|
[55] |
MICHALSEN M M, KING A S, ISTOK J D, et al. Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation[J]. Journal of Hazardous Materials, 2020, 387: 121529. doi: 10.1016/j.jhazmat.2019.121529
|
[56] |
HATZINGER P B, STREGER S H, BEGLEY J F. Enhancing aerobic biodegradation of 1, 2-dibromoethane in groundwater using ethane or propane and inorganic nutrients[J]. Journal of Contaminant Hydrology, 2015, 172: 61-70. doi: 10.1016/j.jconhyd.2014.11.006
|
[57] |
邹莎莎. 零价铁/生物强化技术原位修复受氯代烯烃污染的地下水[J]. 净水技术, 2023, 42(S1): 227-233+269.
|
[58] |
STAMM. Vertical circulation flows for vadose and groundwater zone in situ (bio-)remediation[J]. 1995.
|
[59] |
ZHAO Y, QU D, ZHOU R, et al. Efficacy of forming biofilms by Pseudomonas migulae AN-1 toward in situ bioremediation of aniline-contaminated aquifer by groundwater circulation wells[J]. Environmental Science and Pollution Research, 2016, 23(12): 11568-11573. doi: 10.1007/s11356-016-6737-7
|
[60] |
YUAN S, LIU Y, ZHANG P, et al. Electrolytic groundwater circulation well for trichloroethylene degradation in a simulated aquifer[J]. Science China Technological Sciences, 2021, 64(2): 251-260. doi: 10.1007/s11431-019-1521-7
|
[61] |
蒲生彦, 王宇, 王朋. 地下水循环井修复技术与应用: 关键问题、主要挑战及解决策略[J]. 安全与环境工程, 2021, 28(3): 78-86.
|
[62] |
LI X, LI Z, CAILI D, et al. Bibliometric analysis of zerovalent iron particles research for environmental remediation from 2000 to 2019[J]. Environmental Science and Pollution Research, 2021, 28.
|
[63] |
张莉, 刘菲, 袁慧卿, 等. 地下水抽出处理技术研究进展与展望[J]. 现代地质, 2023, 37(04): 977-985.
|
[64] |
U. S. Environmental Protection Agency. Remediation [EB/OL]. [2024-01-31].https://www.clu-in.org/techfocus/. pdf, 2021.
|
[65] |
U. S. Environmental Protection Agency. Air sparging/ high vacuum extraction to remove chlorinated solvents in groundwater and soil [EB/OL]. [2024-01-31].https://www.clu-in.org/techfocus/default.focus/sec/Air%5FSparging/cat/Application/. pdf, 1998.
|
[66] |
U. S. Environmental Protection Agency. Multi-phase extraction: state-of-the-practice [EB/OL]. [2024-01-31].https://www.clu-in.org/techfocus/default.focus/sec/Multi%2DPhase%5FExtraction/cat/Application/. pdf, 1999.
|
[67] |
REECE J, CHRISTENSON M, KAMBHU A, et al. Remediating contaminated groundwater with an aerated, Direct-Push, oxidant delivery system[J]. Water, 2020, 12(12): 3383. doi: 10.3390/w12123383
|
[68] |
MILLER C, RUFFING S, KLINE R. Solar-powered in situ soil washing with surfactant to collect LNAPL[J]. Remediation Journal, 2012, 22(2): 69-79. doi: 10.1002/rem.21311
|
[69] |
IEG Technologie GmbH. Soil and groundwater remediation and aquifer restoration [EB/OL]. [2024-01-31].https://ieg-technology.com. pdf.
|
[70] |
CIAMPI P, ESPOSITO C, BARTSCH E, et al. Remediation of chlorinated aliphatic hydrocarbons (CAHs) contaminated site coupling groundwater recirculation well (IEG-GCW®) with a peripheral injection of soluble nutrient supplement (IEG-C-MIX) via multilevel-injection wells (IEG-MIW)[J]. Heliyon, 2022, 8(11): e11402. doi: 10.1016/j.heliyon.2022.e11402
|
[71] |
EVAN COX. Electrokinetic-enhanced (EK-Enhanced) amendment delivery for remediation of low permeability and heterogeneous materials[R]. 2018.
|
[72] |
State of California Department of General Services. Removal action completion report electrical resistance heating in source area former mercury cleaners site area[R]. 2018.
|
[73] |
谷庆宝. 中国土壤与地下水调查修复装备研究报告[R]. 2022.
|
[74] |
李佳璐, 侯盾, 崔双超, 等. 一种用于地下水原位、抽出处理的臭氧高级氧化系统: ZL202122044345.5[P]. 2021-11-23.
|
[75] |
程功弼, 赵宝正, 陈骉, 等. 一种纳米级原位多点注药一体式模块化智能设备: ZL201720504859.5[P]. 2017-08-29.
|
[76] |
程功弼, 沈秋悦, 徐金旺, 等. 一种强化土壤气相抽提和地下水修复的一体化修复系统: ZL201721880542.8[P]. 2022-10-25.
|
[77] |
侯德义. 我国工业场地地下水污染防治十大科技难题[J]. 环境科学研究, 2022, 35(09): 2015-2025.
|
[78] |
GREEN C, LIAO L, NOLAN B, et al. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, wisconsin, USA[J]. Water Resources Research, 2018, 54(1): 301-322. doi: 10.1002/2017WR022012
|
[79] |
YAO Y, MAO F, XIAO Y, et al. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination[J]. Water Research, 2019, 150: 111-119. doi: 10.1016/j.watres.2018.11.038
|
[80] |
A. V. P, SAJIKUMAR N. A review on the study of immiscible fluid flow in unsaturated porous media: Modelling and Remediation[J]. Journal of Porous Media, 2019, 22(8): 889-922.
|
[81] |
HOU D, AL-TABBAA A, O CONNOR D, et al. Sustainable remediation and redevelopment of brownfield sites[J]. Nature Reviews Earth & Environment, 2023, 4(4): 271-286.
|
[82] |
中国环保产业协会, 中国环保产业发展状况报告[R]. 2022.
|