[1] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[2] 俞馨贤. Bi2WO6光催化剂制备改性及光催化降解磺胺嘧啶性能研究[D]. 西藏: 西藏大学, 2023.
[3] 杨佳妮. 基于柠檬酸铁的Fe/C催化剂制备及其活化过硫酸盐降解磺胺嘧啶的性能研究[D]. 甘肃: 兰州交通大学, 2023.
[4] JIA A, WAN Y, XIAO Y, et al. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant[J]. Water Research, 2012, 46(2): 387-394. doi: 10.1016/j.watres.2011.10.055
[5] VALIALO P, KRUGLOVA A, MIKOLA A, et al. Toxicological impacts of antibiotics on aquatic micro-organisms: a mini-review[J]. International Journal of Hygiene and Environmental Health, 2017, 220(3): 558-569. doi: 10.1016/j.ijheh.2017.02.003
[6] Han N, Wang S, Yao Z, et al. Superior three‐dimensional perovskite catalyst for catalytic oxidation[J]. EcoMat, 2020, 2(3): e12044. doi: 10.1002/eom2.12044
[7] ALHARBI S K, KANG J, NGHIEM L D, et al. Photolysis and UV/H2O2 of diclofenac, sulfamethoxazole, carbamazepine, and trimethoprim: Identification of their major degradation products by ESI–LC–MS and assessment of the toxicity of reaction mixtures[J]. Process Safety and Environmental Protection, 2017, 112: 222-234. doi: 10.1016/j.psep.2017.07.015
[8] LIU Z, DEMEESTERE K, VAN H S. Comparison and performance assessment of ozone-based AOPs in view of trace organic contaminants abatement in water and wastewater: a review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105599. doi: 10.1016/j.jece.2021.105599
[9] QIN W, FANG G, WANG Y, et al. Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals[J]. Chemical Engineering Journal, 2018, 348: 526-534. doi: 10.1016/j.cej.2018.04.215
[10] NIU L, ZHANG K, JIANG L, et al. Emerging periodate-based oxidation technologies for water decontamination: A state-of-the-art mechanistic review and future perspectives[J]. Journal of Environmental Management, 2022, 323: 116241. doi: 10.1016/j.jenvman.2022.116241
[11] DAI J, WANG Z, CHEN K, et al. Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of bisphenol A: Two nonradical pathways[J]. Chemical Engineering Journal, 2023, 453: 139889. doi: 10.1016/j.cej.2022.139889
[12] ZONG Y, ZHANG H, SHAO Y, et al. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants[J]. Journal of Hazardous Materials, 2022, 423: 126991. doi: 10.1016/j.jhazmat.2021.126991
[13] DU J, TANG S, LING H, et al. Insights into periodate oxidation of bisphenol a mediated by manganese[J]. Chemical Engineering Journal, 2019, 369: 1034-1039. doi: 10.1016/j.cej.2019.03.158
[14] LING C, WU S, HAN J, et al. Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: Performance and dominant routine of reactive species production[J]. Water Research, 2022, 220: 118676. doi: 10.1016/j.watres.2022.118676
[15] CHOI Y, YOON H I, LEE C, et al. Activation of periodate by freezing for the degradation of aqueous organic pollutants[J]. Environmental Science & Technology, 2018, 52(9): 5378-5385.
[16] LEE Y C, CHEN M J, HUANG C P, et al. Efficient sonochemical degradation of perfluorooctanoic acid using periodate[J]. Ultrasonics Sonochemistry, 2016, 31: 499-505. doi: 10.1016/j.ultsonch.2016.01.030
[17] ZHANG X, YU X, YU X, et al. Efficiency and mechanism of 2, 4-dichlorophenol degradation by the UV/IO4 process[J]. Science of the Total Environment, 2021, 782: 146781. doi: 10.1016/j.scitotenv.2021.146781
[18] CHIA L H, TANG X, WEAVERS L K. Kinetics and mechanism of photoactivated periodate reaction with 4-chlorophenol in acidic solution[J]. Environmental Science & Technology, 2004, 38(24): 6875-6880.
[19] DJABALLH M L, MEROUANI S, BENDJAMA H, et al. Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408: 113102. doi: 10.1016/j.jphotochem.2020.113102
[20] SUN H, HE F, CHOI W. Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria[J]. Environmental Science & Technology, 2020, 54(10): 6427-6437.
[21] BOKARE A D, CHOI W. Singlet-oxygen generation in alkaline periodate solution[J]. Environmental Science & Technology, 2015, 49(24): 14392-14400.
[22] ZONG Y, SHAO Y, ZENG Y, et al. Enhanced oxidation of organic contaminants by iron (II)-activated periodate: the significance of high-valent iron–oxo species[J]. Environmental Science & Technology, 2021, 55(11): 7634-7642.
[23] LONG Y, DAI J, ZHAO S, et al. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation[J]. Environmental Science & Technology, 2021, 55(8): 5357-5370.
[24] DU J, XIAO G, XI Y, et al. Periodate activation with manganese oxides for sulfanilamide degradation[J]. Water Research, 2020, 169: 115278. doi: 10.1016/j.watres.2019.115278
[25] LONG Y, DAI J, ZHAO S, et al. Metal–organic framework-derived magnetic carbon for efficient decontamination of organic pollutants via periodate activation: surface atomic structure and mechanistic considerations[J]. Journal of Hazardous Materials, 2022, 424: 126786. doi: 10.1016/j.jhazmat.2021.126786
[26] WANG Q, ZENG H, LIANG Y, et al. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals[J]. Chemical Engineering Journal, 2021, 407: 126738. doi: 10.1016/j.cej.2020.126738
[27] ZHANG X, KAMALI M, ULENERS T, et al. UV/TiO2/periodate system for the degradation of organic pollutants–kinetics, mechanisms and toxicity study[J]. Chemical Engineering Journal, 2022, 449: 137680. doi: 10.1016/j.cej.2022.137680
[28] LIU F, LI Z, DONG Q, et al. Catalyst-free periodate activation by solar irradiation for bacterial disinfection: performance and mechanisms[J]. Environmental Science & Technology, 2022, 56(7): 4413-4424.
[29] GUO R, QI Y, LI B, et al. Efficient degradation of alkyl imidazole ionic liquids in simulated sunlight irradiated periodate system: Kinetics, reaction mechanisms, and toxicity evolution[J]. Water Research, 2022, 226: 119316. doi: 10.1016/j.watres.2022.119316
[30] HUANG Y, XIE Q, WANG H, et al. Degradation of trimethoprim in the simulated solar light/periodate system: Process and mechanism analysis[J]. Journal of Water Process Engineering, 2024, 57: 104726. doi: 10.1016/j.jwpe.2023.104726
[31] MAO D, YAN X, WANG H, et al. Catalysis of rGO-WO3 nanocomposite for aqueous bisphenol a degradation in dielectric barrier discharge plasma oxidation process[J]. Chemosphere, 2021, 262: 128073. doi: 10.1016/j.chemosphere.2020.128073
[32] CHEN M, CHU W. Photo-oxidation of an endocrine disrupting chemical o-chloroaniline with the assistance of TiO2 and iodate: Reaction parameters and kinetic models[J]. Chemical Engineering Journal, 2014, 248: 273-279. doi: 10.1016/j.cej.2014.03.038
[33] LI R, WANG J, WU H, et al. Periodate activation for degradation of organic contaminants: Processes, performance and mechanism[J]. Separation and Purification Technology, 2022, 292: 120928. doi: 10.1016/j.seppur.2022.120928
[34] LI X, GAN X. Photo-Fenton degradation of multiple pharmaceuticals at low concentrations via Cu-doped-graphitic carbon nitride (g-C3N4) under simulated solar irradiation at a wide pH range[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108290. doi: 10.1016/j.jece.2022.108290
[35] WEAVERS L K, HUA I, HOFFMANN M R. Degradation of triethanolamine and chemical oxygen demand reduction in wastewater by photoactivated periodate[J]. Water Environment Research, 1997, 69(6): 1112-1119. doi: 10.2175/106143097X125849
[36] ZHU Y, WANG F, ZHOU B, et al. Photo-assisted Fe2+ modified molybdenum disulfide activated potassium persulfate to degrade sulfadiazine: Insights into the degradation pathway and mechanism from density functional theory[J]. Chemical Engineering Journal, 2022, 435: 134904. doi: 10.1016/j.cej.2022.134904
[37] YAO J, DONG Z, YE X, et al. Electrochemically activated peroxymonosulfate with mixed metal oxide electrodes for sulfadiazine degradation: Mechanism, DFT study and toxicity evaluation[J]. Chemosphere, 2022, 309: 136695. doi: 10.1016/j.chemosphere.2022.136695
[38] KINNEY C A, FURLONG E T, ZAUGG D, et al. Survey of organic wastewater contaminants in biosolids destined for land application[J]. Environmental Science & Technology, 2006, 40(23): 7207-7215.
[39] FENG Y, SHIH K. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms[J]. Environmental Science & Technology, 2016, 50: 3119-3127.