[1] PENG Z, LIU X, ZHANG W, et al. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review[J]. Environment International, 2020, 134: 105298. doi: 10.1016/j.envint.2019.105298
[2] SAJID M, ASIF M, BAIG N, et al. Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification[J]. Journal of Water Process Engineering, 2022, 47: 102815. doi: 10.1016/j.jwpe.2022.102815
[3] HAI R, WANG Y, WANG X, et al. Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge[J]. Plos One, 2014, 9(9): e107345. doi: 10.1371/journal.pone.0107345
[4] MA Q, QU Y, SHEN W et al. Activated sludge microbial community responses to single-walled carbon nanotubes: community structure does matter[J]. Water Science and Technology, 2015, 71(8): 1235-1240. doi: 10.2166/wst.2015.095
[5] QU Y, ZHANG X, SHEN W, et al. Illumina MiSeq sequencing reveals long-term impacts of single-walled carbon nanotubes on microbial communities of wastewater treatment systems [J]. Bioresource Technology 2016, 211: 209-215.
[6] GAO M, GAO F, MA B, et al. Insights into long-term effects of amino-functionalized multi-walled carbon nanotubes (MWCNTs-NH2) on the performance, enzymatic activity and microbial community of sequencing batch reactor[J]. Environmental Pollution, 2019, 254: 113118. doi: 10.1016/j.envpol.2019.113118
[7] GAO F, MA B, SHE Z, et al. Performance evaluation, enzymatic activity and microbial community of sequencing batch reactor under hydroxyl-functionalized multi-walled carbon nanotubes (MWCNTs-OH) stress[J]. Environmental Technology & Innovation, 2021, 21: 101213.
[8] MA B, GAO F, YU N, et al. Long-term impacts of carboxyl functionalized multi-walled carbon nanotubes on the performance, microbial enzymatic activity and microbial community of sequencing batch reactor[J]. Bioresource Technology, 2019, 286: 121382. doi: 10.1016/j.biortech.2019.121382
[9] QU Y, MA Q, DENG J, et al. Responses of microbial communities to single-walled carbon nanotubes in phenol wastewater treatment systems[J]. Environmental Science & Technology, 2015, 49(7): 4627-4635.
[10] ZHOU W, WANG Y, WANG M, et al. The co-effect of ampicillin and multi-walled carbon nanotubes on activated sludge in sequencing batch reactors: microbial status, microbial community structure and ARGs propagation[J]. Environmental Science-Nano, 2021, 8(1): 204-216. doi: 10.1039/D0EN00668H
[11] SIYAL A A, SHAMSUDDIN M R, LOW A, et al. A review on recent developments in the adsorption of surfactants from wastewater[J]. Journal of Environmental Management, 2020, 254: 109797. doi: 10.1016/j.jenvman.2019.109797
[12] 国家环境保护总局. 水和废水监测分析方法 [M]. 北京: 中国环境科学出版社, 2002.
[13] DERESZEWSKA A, CYTAWA S, TOMCZAK-WANDZEL R, et al. The effect of anionic surfactant concentration on activated sludge condition and phosphate release in biological treatment plant[J]. Polish Journal of Environmental Studies, 2015, 24(1): 83-91.
[14] ZHANG T, SHAO M, YE L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants [J]. ISME Journal 2012, 6(6): 1137-1147.
[15] HUANG T L, ZHOU S L, ZHANG H H, et al. Nitrogen removal characteristics of a newly isolated indigenous aerobic denitrifier from Oligotrophic drinking water reservoir, Zoogloea sp. N299[J]. International Journal of Molecular Sciences, 2015, 16(5): 10038-10060. doi: 10.3390/ijms160510038
[16] 毛跃建. 废水处理系统中重要功能类群Thauera属种群结构与功能的研究[D]. 上海: 上海交通大学, 2009.
[17] 吴蔓莉. 两株优势菌对多环芳烃的降解机理研究[D]. 西安: 西安建筑科技大学, 2010.
[18] 雷萍, 聂麦茜, 张志杰等. 一株多环芳烃降解菌在焦化废水降解中的应用研究[J]. 西安: 西安交通大学学报, 2001(10): 1055-1058.
[19] LI H, WU S, YANG C. Performance and biomass characteristics of SBRs treating high-salinity wastewater at presence of anionic surfactants[J]. International Journal of Environmental Research and Public Health, 2020, 17(8): 2689. doi: 10.3390/ijerph17082689