Qin K N, Wei L L, Li J J, et al. A review of ARGs in WWTPs: Sources, stressors and elimination[J]. Chinese Chemical Letters, 2020, 31(10): 2603-2613
|
Bengtsson-Palme J, Milakovic M, Švecová H, et al. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities[J]. Water Research, 2019, 162: 437-445
|
Yan Z Z, Chen Q L, Zhang Y J, et al. Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution[J]. Environment International, 2019, 132: 105106
|
Zheng B W, Liu W H, Xu H, et al. Occurrence and distribution of antimicrobial resistance genes in the soil of an industrial park in China: A metagenomics survey[J]. Environmental Pollution, 2021, 273: 116467
|
Milaković M, Vestergaard G, González-Plaza J J, et al. Effects of industrial effluents containing moderate levels of antibiotic mixtures on the abundance of antibiotic resistance genes and bacterial community composition in exposed creek sediments[J]. The Science of the Total Environment, 2020, 706: 136001
|
Tang Y, Liang Z S, Li G Y, et al. Metagenomic profiles and health risks of pathogens and antibiotic resistance genes in various industrial wastewaters and the associated receiving surface water[J]. Chemosphere, 2021, 283: 131224
|
Ding H J, Qiao M, Zhong J Y, et al. Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake[J]. Water Research, 2020, 174: 115603
|
Karkman A, Do T T, Walsh F, et al. Antibiotic-resistance genes in waste water[J]. Trends in Microbiology, 2018, 26(3): 220-228
|
Pal C, Bengtsson-Palme J, Kristiansson E, et al. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential[J]. BMC Genomics, 2015, 16: 964
|
Chen S F, Zhou Y Q, Chen Y R, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890
|
Bolger A M, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120
|
Langmead B, Salzberg S L. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359
|
Li D H, Liu C M, Luo R B, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676
|
Gurevich A, Saveliev V, Vyahhi N, et al. QUAST: Quality assessment tool for genome assemblies[J]. Bioinformatics, 2013, 29(8): 1072-1075
|
Hyatt D, Chen G L, Locascio P F, et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11: 119
|
Fu L M, Niu B F, Zhu Z W, et al. CD-HIT: Accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3150-3152
|
Patro R, Duggal G, Love M I, et al. Salmon provides fast and bias-aware quantification of transcript expression[J]. Nature Methods, 2017, 14(4): 417-419
|
Yin X L, Jiang X T, Chai B L, et al. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes[J]. Bioinformatics, 2018, 34(13): 2263-2270
|
Krawczyk P S, Lipinski L, Dziembowski A. PlasFlow: Predicting plasmid sequences in metagenomic data using genome signatures[J]. Nucleic Acids Research, 2018, 46(6): e35
|
Hendriksen R S, Munk P, Njage P, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage[J]. Nature Communications, 2019, 10(1): 1124
|
Du D J, Wang-Kan W K, Neuberger A, et al. Multidrug efflux pumps: Structure, function and regulation[J]. Nature Reviews Microbiology, 2018, 16(9): 523-539
|
洪颖忻, 吴浪, 张立秋, 等. 制药废水处理系统中抗生素抗性基因的研究进展[J]. 工业水处理, 2022, 42(4): 39-45
Hong Y X, Wu L, Zhang L Q, et al. Research progress of antibiotic resistance genes in pharmaceutical wastewater treatment systems[J]. Industrial Water Treatment, 2022, 42(4): 39-45(in Chinese)
|
Zheng J, Su C, Zhou J W, et al. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants[J]. Chemical Engineering Journal, 2017, 317: 309-316
|
Ju F, Beck K, Yin X L, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes[J]. The ISME Journal, 2019, 13(2): 346-360
|
Bao Y Y, Li F F, Chen L J, et al. Fate of antibiotics in engineered wastewater systems and receiving water environment: A case study on the coast of Hangzhou Bay, China[J]. The Science of the Total Environment, 2021, 769: 144642
|
颉亚玮. 杭州湾可吸附有机卤素污染溯源和源减排工艺研究[D]. 北京: 清华大学, 2017: 25-40
|
苏志国, 张衍, 代天娇, 等. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10): 2217-2233
Su Z G, Zhang Y, Dai T J, et al. Antibiotic resistance genes and class Ⅰ integron in the environment: Research progress[J]. Microbiology China, 2018, 45(10): 2217-2233(in Chinese)
|
李彦媚, 赵喜红, 徐泽智, 等. 新型细菌耐药元件——整合子系统[J]. 中国抗生素杂志, 2012, 37(1): 1-7
Li Y M, Zhao X H, Xu Z Z, et al. Novel antibiotic resistance mechanism-integron system[J]. Chinese Journal of Antibiotics, 2012, 37(1): 1-7(in Chinese)
|
Qian X, Gunturu S, Sun W, et al. Long-read sequencing revealed cooccurrence, host range, and potential mobility of antibiotic resistome in cow feces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(25): e2024464118
|
Zhang H M, Hou M Y, Xu Y C, et al. Action and mechanism of the colistin resistance enzyme MCR-4[J]. Communications Biology, 2019, 2: 36
|
Wales A D, Davies R H. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens[J]. Antibiotics, 2015, 4(4): 567-604
|
Che Y, Yang Y, Xu X Q, et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6): e2008731118
|
Che Y, Xia Y, Liu L, et al. Mobile antibiotic resistome in wastewater treatment plants revealed by nanopore metagenomic sequencing[J]. Microbiome, 2019, 7(1): 44
|
Lee J, Ju F, Maile-Moskowitz A, et al. Unraveling the riverine antibiotic resistome: The downstream fate of anthropogenic inputs[J]. Water Research, 2021, 197: 117050
|
Su Z G, Wen D H. Characterization of antibiotic resistance across Earth's microbial genomes[J]. The Science of the Total Environment, 2022, 816: 151613
|
Henderson P J F, Maher C, Elbourne L D H, et al. Physiological functions of bacterial “multidrug” efflux pumps[J]. Chemical Reviews, 2021, 121(9): 5417-5478
|
张刚, 冯婕. 细菌固有耐药的研究进展[J]. 遗传, 2016, 38(10): 872-880
Zhang G, Feng J. The intrinsic resistance of bacteria[J]. Hereditas, 2016, 38(10): 872-880(in Chinese)
|
Chen Q L, An X L, Li H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016, 92-93: 1-10
|
Raza S, Shin H, Hur H G, et al. Higher abundance of core antimicrobial resistant genes in effluent from wastewater treatment plants[J]. Water Research, 2022, 208: 117882
|