Environment Canada and Health Canada. Priority substances list assessment report[R]. Ottawa, Ontario: Environment Canada and Health Canada, 1993: 56
Reth M, Oehme M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins[J]. Analytical and Bioanalytical Chemistry, 2004, 378(7): 1741-1747
Zhao N, Cui Y, Wang P W, et al. Short-chain chlorinated paraffins in soil, sediment, and seawater in the intertidal zone of Shandong Peninsula, China: Distribution and composition[J]. Chemosphere, 2019, 220: 452-458
Bayen S, Obbard J P, Thomas G O. Chlorinated paraffins: A review of analysis and environmental occurrence[J]. Environment International, 2006, 32(7): 915-929
Feo M L, Eljarrat E, Barceló D, et al. Occurrence, fate and analysis of polychlorinated n-alkanes in the environment[J]. TrAC Trends in Analytical Chemistry, 2009, 28(6): 778-791
郑结斌. 中国氯化石蜡行业现状及发展分析[J]. 中国氯碱, 2021(1): 22-24
Fiedler H. Short-chain Chlorinated Paraffins: Production, Use and International Regulations[M]// Boer J. Chlorinated Paraffins. Springer Link, 2010: 1-40
Yuan S C, Wang M, Lv B, et al. Transformation pathways of chlorinated paraffins relevant for remediation: A mini-review[J]. Environmental Science and Pollution Research International, 2021, 28(8): 9020-9028
Huang Y M, Chen L G, Jiang G, et al. Bioaccumulation and biomagnification of short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary, South China[J]. The Science of the Total Environment, 2019, 671: 262-269
Ma X D, Zhang H J, Wang Z, et al. Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China[J]. Environmental Science & Technology, 2014, 48(10): 5964-5971
崔阳. 山东半岛沿岸短链氯化石蜡的分布、组成、迁移规律及其影响因素[D]. 济南: 山东大学, 2018: 28-35
Yuan B, Wang T, Zhu N L, et al. Short chain chlorinated paraffins in mollusks from coastal waters in the Chinese Bohai Sea[J]. Environmental Science & Technology, 2012, 46(12): 6489-6496
Zeng L X, Zhao Z S, Li H J, et al. Distribution of short chain chlorinated paraffins in marine sediments of the East China Sea: Influencing factors, transport and implications[J]. Environmental Science & Technology, 2012, 46(18): 9898-9906
Persistent Organic Pollutants Review Committee. Recommendation by the Persistent Organic Pollutants Review Committee to list short-chain chlorinated paraffins in annex A to the convention[C]. Stockholm: United Nations Environment Programme, 2017: 35-36
Wang X, Zhu J B, Xue Z M, et al. The environmental distribution and toxicity of short-chain chlorinated paraffins and underlying mechanisms: Implications for further toxicological investigation[J]. The Science of the Total Environment, 2019, 695: 133834
Ali T E S, Legler J. Overview of the Mammalian and Environmental Toxicity of Chlorinated Paraffins[M]// Boer J. Chlorinated Paraffins. Springer Link, 2010: 135-154
Bucher J R, Alison R H, Montgomery C A, et al. Comparative toxicity and carcinogenicity of two chlorinated paraffins in F344/N rats and B6C3F1 mice[J]. Toxicological Sciences, 1987, 9(3): 454-468
Burýšková B, Blaha L, Vršková D, et al. Sublethal toxic effects and induction of gGutathione S-transferase by short-chain chlorinated paraffins (SCCPs) and C-12 alkane (dodecane) in Xenopus laevis frog embryos[J]. Acta Veterinaria Brno, 2006, 75(1): 115-122
Cooley H M, Fisk A T, Wiens S C, et al. Examination of the behavior and liver and thyroid histology of juvenile rainbow trout (Oncorhynchus mykiss) exposed to high dietary concentrations of C(10)-, C(11)-, C(12)- and C(14)-polychlorinated n-alkanes[J]. Aquatic Toxicology, 2001, 54(1-2): 81-99
Liu L H, Li Y F, Coelhan M, et al. Relative developmental toxicity of short-chain chlorinated paraffins in zebrafish (Danio rerio) embryos[J]. Environmental Pollution, 2016, 219: 1122-1130
刘丽华, 马万里, 刘丽艳, 等. 短链氯化石蜡C10(50.2% Cl)对斑马鱼胚胎的发育毒性[J]. 哈尔滨工业大学学报, 2016, 48(8): 127-130 , 140 Liu L H, Ma W L, Liu L Y, et al. Study on developmental toxicity of short-chain chlorinated paraffins C10(50.2% Cl) in zebrafish embryos[J]. Journal of Harbin Institute of Technology, 2016, 48(8): 127-130, 140(in Chinese)
Ren X Q, Zhang H J, Geng N B, et al. Developmental and metabolic responses of zebrafish (Danio rerio) embryos and larvae to short-chain chlorinated paraffins (SCCPs) exposure[J]. Science of the Total Environment, 2018, 622-623: 214-221
Geng N B, Zhang H J, Zhang B Q, et al. Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human hepatoma HepG2 cells[J]. Environmental Science & Technology, 2015, 49(5): 3076-3083
王菲迪, 张海军, 耿柠波, 等. 短链氯化石蜡(SCCPs)和多环芳烃(PAHs)联合暴露对HepG2细胞抗氧化系统的影响[J]. 生态毒理学报, 2018, 13(5): 218-225 Wang F D, Zhang H J, Geng N B, et al. Combined effects of SCCPs and PAHs on the antioxidant system in HepG2 cells[J]. Asian Journal of Ecotoxicology, 2018, 13(5): 218-225(in Chinese)
Chen J W, Ni B B, Li B, et al. The responses of autophagy and apoptosis to oxidative stress in nucleus pulposus cells: Implications for disc degeneration[J]. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2014, 34(4): 1175-1189
Lepage T, Sardet C, Gache C. Spatial expression of the hatching enzyme gene in the sea urchin embryo[J]. Developmental Biology, 1992, 150(1): 23-32
Araki K, Fujikawa N, Nakayama I, et al. Early expression of a hatching enzyme gene in Masu salmon (Oncorhynchus masou) embryos[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 53(3): 509-512
赵君. 中国对虾(Penaeus chinensis)孵化酶的分离纯化、性质及其鉴定研究[D]. 青岛: 中国海洋大学, 2007: 14-18
Sano K, Inohaya K, Kawaguchi M, et al. Purification and characterization of zebrafish hatching enzyme—An evolutionary aspect of the mechanism of egg envelope digestion[J]. The FEBS Journal, 2008, 275(23): 5934-5946
Samaee S M, Rabbani S, Jovanović B, et al. Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO2 particles in zebrafish: A comparison between two different classes of hatching-derived variables[J]. Ecotoxicology and Environmental Safety, 2015, 116: 121-128
Hendon L A. Cross-talk between pyrene and hypoxia signaling pathways in embryonic Cyprinodon variegatus[D]. Hattiesburg: University of Southern Mississippi, 2006: 19-25
Fisk A, Tomy G, Muir D. Toxicity of C 10-, C 11-, C 12-, and C 14- polychlorinated alkanes to Japanese medaka (Oryzias latipes) embryos[J]. Environmental Toxicology and Chemistry, 1999, 18(12): 2894-2902
Vieira R, Venâncio C A S, Félix L M. Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development[J]. Environmental Science and Pollution Research, 2020, 27(17): 21174-21187
Sultana Z, Khan M M, Mostakim G M, et al. Studying the effects of profenofos, an endocrine disruptor, on organogenesis of zebrafish[J]. Environmental Science and Pollution Research International, 2021, 28(16): 20659-20667
Hill A J, Bello S M, Prasch A L, et al. Water permeability and TCDD-induced edema in zebrafish early-life stages[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2004, 78(1): 78-87
Carbajal-Hernández A L, Valerio-García R C, Martínez-Ruíz E B, et al. Maternal-embryonic metabolic and antioxidant response of Chapalichthys pardalis (Teleostei: Goodeidae) induced by exposure to 3,4-dichloroaniline[J]. Environmental Science and Pollution Research, 2017, 24(21): 17534-17546
Berntssen M H G, Aatland A, Handy R D. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr[J]. Aquatic Toxicology, 2003, 65(1): 55-72
Verlecar X N, Jena K B, Chainy G B N. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures[J]. Chemosphere, 2008, 71(10): 1977-1985
周启星. 生态毒理学[M]. 北京: 科学出版社, 2004: 28-30
Atli G, Alptekin O, Tükel S, et al. Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2006, 143(2): 218-224
Larose C, Canuel R, Lucotte M, et al. Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2008, 147(2): 139-149
Guilherme S, Válega M, Pereira M E, et al. Antioxidant and biotransformation responses in Liza aurata under environmental mercury exposure—Relationship with mercury accumulation and implications for public health[J]. Marine Pollution Bulletin, 2008, 56(5): 845-859
Liang X M, Wang F, Li K B, et al. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio): Developmental toxicity, oxidative stress and immunotoxicity[J]. Fish & Shellfish Immunology, 2020, 96: 262-269
Yang W K, Chiang L F, Tan S W, et al. Environmentally relevant concentrations of di(2-ethylhexyl)phthalate exposure alter larval growth and locomotion in medaka fish via multiple pathways[J]. The Science of the Total Environment, 2018, 640-641: 512-522
李磊, 蒋玫, 王云龙. 邻苯二甲酸二丁酯和邻苯二甲酸二辛酯对大黄鱼受精卵及仔鱼的急性毒性效应[J]. 海洋渔业, 2019, 41(3): 346-353 Li L, Jiang M, Wang Y L. Toxic effects of DBP and DOP on early life stage of Pseudosciaena crocea[J]. Marine Fisheries, 2019, 41(3): 346-353(in Chinese)
王艳, 马泽民, 吴石金. 3种PAEs对蚯蚓的毒性作用和组织酶活性影响的研究[J]. 环境科学, 2014, 35(2): 770-779 Wang Y, Ma Z M, Wu S J. Study on the effect of enzymatic activity and acute toxicity of three PAEs on Eisenia foetida[J]. Environmental Science, 2014, 35(2): 770-779(in Chinese)