Xie Z X, Lu G H, Liu J C, et al. Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China[J]. Chemosphere, 2015, 138:140-147
Li Y, Zhang L Y, Liu X S, et al. Ranking and prioritizing pharmaceuticals in the aquatic environment of China[J]. Science of the Total Environment, 2019, 658:333-342
Lajeunesse A, Smyth S A, Barclay K, et al. Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada[J]. Water Research, 2012, 46(17):5600-5612
Ma L D, Li J, Li J J, et al. Occurrence and source analysis of selected antidepressants and their metabolites in municipal wastewater and receiving surface water[J]. Environmental Science Processes & Impacts, 2018, 20(7):1020-1029
Cao J S, Fu B M, Zhang T, et al. Fate of typical endocrine active compounds in full-scale wastewater treatment plants:Distribution, removal efficiency and potential risks[J]. Bioresource Technology, 2020, 310:123436
Mole R A, Brooks B W. Global scanning of selective serotonin reuptake inhibitors:Occurrence, wastewater treatment and hazards in aquatic systems[J]. Environmental Pollution, 2019, 250:1019-1031
Silva L J, Lino C M, Meisel L M, et al. Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment:An ecopharmacovigilance approach[J]. Science of the Total Environment, 2012, 437:185-195
Togunde O P, Cudjoe E, Oakes K D, et al. Determination of selected pharmaceutical residues in wastewater using an automated open bed solid phase microextraction system[J]. Journal of Chromatography A, 2012, 1262:34-42
Arnnok P, Singh R R, Burakham R, et al. Selective uptake and bioaccumulation of antidepressants in fish from effluent-impacted Niagara River[J]. Environmental Science & Technology, 2017, 51(18):10652-10662
Wu M H, Xiang J J, Chen F F, et al. Occurrence and risk assessment of antidepressants in Huangpu River of Shanghai, China[J]. Environmental Science and Pollution Research International, 2017, 24(25):20291-20299
Grabicova K, Grabic R, Fedorova G, et al. Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream[J]. Water Research, 2017, 124:654-662
Ni W, Watts S W. 5-hydroxytryptamine in the cardiovascular system:Focus on the serotonin transporter (SERT)[J]. Clinical and Experimental Pharmacology & Physiology, 2006, 33(7):575-583
Brooks B W. Fish on Prozac (and Zoloft):Ten years later[J]. Aquatic Toxicology, 2014, 151:61-67
Lillesaar C. The serotonergic system in fish[J]. Journal of Chemical Neuroanatomy, 2011, 41(4):294-308
Prasad P, Ogawa S, Parhar I S. Role of serotonin in fish reproduction[J]. Frontiers in Neuroscience, 2015, 9:195
Duffy-Whritenour J E, Zelikoff J T. Relationship between serotonin and the immune system in a teleost model[J]. Brain, Behavior, and Immunity, 2008, 22(2):257-264
Qiu W H, Wu M H, Liu S, et al. Suppressive immunoregulatory effects of three antidepressants via inhibition of the nuclear factor-κB activation assessed using primary macrophages of carp (Cyprinus carpio)[J]. Toxicology and Applied Pharmacology, 2017, 322:1-8
裴可灵, 张涛, 张一弛, 等. CYP2D6/CYP2C19基因多态性对SSRIs药物代谢及效应的影响[J]. 精神医学杂志, 2017, 30(4):294-296
Smith E M, Chu S G, Paterson G, et al. Cross-species comparison of fluoxetine metabolism with fish liver microsomes[J]. Chemosphere, 2010, 79(1):26-32
Tisler S, Zindler F, Freeling F, et al. Transformation products of fluoxetine formed by photodegradation in water and biodegradation in zebrafish embryos (Danio rerio)[J]. Environmental Science & Technology, 2019, 53(13):7400-7409
Zindler F, Tisler S, Loerracher A K, et al. Norfluoxetine is the only metabolite of fluoxetine in zebrafish (Danio rerio) embryos that accumulates at environmentally relevant exposure scenarios[J]. Environmental Science & Technology, 2020, 54(7):4200-4209
刘昭前, 王久辉, 周宏灏. 氟西汀的药代动力学及其与CYP450酶的作用[J]. 中国药理学通报, 2000, 16(6):618-620 Liu Z Q, Wang J H, Zhou H H. Pharmacokinetics of fluoxetine and its effects on cytochrome P450 isoenzymes[J]. Chinese Pharmacological Bulletin, 2000, 16(6):618-620(in Chinese)
Paterson G, Metcalfe C D. Uptake and depuration of the anti-depressant fluoxetine by the Japanese medaka (Oryzias latipes)[J]. Chemosphere, 2008, 74(1):125-130
David A, Lange A, Tyler C R, et al. Concentrating mixtures of neuroactive pharmaceuticals and altered neurotransmitter levels in the brain of fish exposed to a wastewater effluent[J]. Science of the Total Environment, 2018, 621:782-790
Grabicova K, Lindberg R H, Ostman M, et al. Tissue-specific bioconcentration of antidepressants in fish exposed to effluent from a municipal sewage treatment plant[J]. Science of the Total Environment, 2014, 488-489:46-50
Lajeunesse A, Gagnon C, Gagné F, et al. Distribution of antidepressants and their metabolites in brook trout exposed to municipal wastewaters before and after ozone treatment-Evidence of biological effects[J]. Chemosphere, 2011, 83(4):564-571
Liu J C, Dan X X, Lu G H, et al. Investigation of pharmaceutically active compounds in an urban receiving water:Occurrence, fate and environmental risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 154:214-220
Xie Z X, Lu G H, Li S, et al. Behavioral and biochemical responses in freshwater fish Carassius auratus exposed to sertraline[J]. Chemosphere, 2015, 135:146-155
Pan C Y, Yang M, Xu H, et al. Tissue bioconcentration and effects of fluoxetine in zebrafish (Danio rerio) and red crucian cap (Carassius auratus) after short-term and long-term exposure[J]. Chemosphere, 2018, 205:8-14
Granato M, van Eeden F J, Schach U, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva[J]. Development, 1996, 123:399-413
Voesenek C J, Muijres F T, van Leeuwen J L. Biomechanics of swimming in developing larval fish[J]. Journal of Experimental Biology, 2018, 221(1):149583
Assad N, Luz W L, Santos-Silva M, et al. Acute restraint stress evokes anxiety-like behavior mediated by telencephalic inactivation and GabAergic dysfunction in zebrafish brains[J]. Scientific Reports, 2020, 10(1):5551
Barreiro-Iglesias A, Mysiak K S, Scott A L, et al. Serotonin promotes development and regeneration of spinal motor neurons in zebrafish[J]. Cell Reports, 2015, 13(5):924-932
Nakamura Y, Yamamoto H, Sekizawa J, et al. The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes):Acute toxicity in fish larvae and bioaccumulation in juvenile fish[J]. Chemosphere, 2008, 70(5):865-873
Valenti T W Jr, Perez-Hurtado P, Chambliss C K, et al. Aquatic toxicity of sertraline to Pimephales promelas at environmentally relevant surface water pH[J]. Environmental Toxicology and Chemistry, 2009, 28(12):2685-2694
de Farias N O, Oliveira R, Sousa-Moura D, et al. Exposure to low concentration of fluoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2019, 215:1-8
Alsop D, Wood C M. Metal and pharmaceutical mixtures:Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?[J]. Aquatic Toxicology, 2013, 140-141:257-267
Henry T B, Black M C. Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western mosquitofish[J]. Archives of Environmental Contamination and Toxicology, 2008, 54(2):325-330
Chen H X, Zeng X F, Mu L, et al. Effects of acute and chronic exposures of fluoxetine on the Chinese fish, topmouth gudgeon Pseudorasbora parva[J]. Ecotoxicology and Environmental Safety, 2018, 160:104-113
Brooks B W, Turner P K, Stanley J K, et al. Waterborne and sediment toxicity of fluoxetine to select organisms[J]. Chemosphere, 2003, 52(1):135-142
Chiffre A, Clérandeau C, Dwoinikoff C, et al. Psychotropic drugs in mixture alter swimming behaviour of Japanese medaka (Oryzias latipes) larvae above environmental concentrations[J]. Environmental Science and Pollution Research, 2016, 23(6):4964-4977
Minagh E, Hernan R, O'Rourke K, et al. Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species[J]. Ecotoxicology and Environmental Safety, 2009, 72(2):434-440
Cunha V, Rodrigues P, Santos M M, et al. Danio rerio embryos on Prozac-Effects on the detoxification mechanism and embryo development[J]. Aquatic Toxicology, 2016, 178:182-189
Kalichak F, Idalencio R, Rosa J G, et al. Waterborne psychoactive drugs impair the initial development of zebrafish[J]. Environmental Toxicology and Pharmacology, 2016, 41:89-94
Pelli M, Connaughton V P. Chronic exposure to environmentally-relevant concentrations of fluoxetine (Prozac) decreases survival, increases abnormal behaviors, and delays predator escape responses in guppies[J]. Chemosphere, 2015, 139:202-209
Nowakowska K, Giebułtowicz J, Kamaszewski M, et al. Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants:Bioaccumulation, physiological and histological changes[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2020, 229:108670
Ribeiro S, Torres T, Martins R, et al. Toxicity screening of diclofenac, propranolol, sertraline and simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays[J]. Ecotoxicology and Environmental Safety, 2015, 114:67-74
Sehonova P, Hodkovicova N, Urbanova M, et al. Effects of antidepressants with different modes of action on early life stages of fish and amphibians[J]. Environmental Pollution, 2019, 254:112999
Wu M H, Liu S, Hu L, et al. Global transcriptomic analysis of zebrafish in response to embryonic exposure to three antidepressants, amitriptyline, fluoxetine and mianserin[J]. Aquatic Toxicology, 2017, 192:274-283
Park J W, Heah T P, Gouffon J S, et al. Global gene expression in larval zebrafish (Danio rerio) exposed to selective serotonin reuptake inhibitors (fluoxetine and sertraline) reveals unique expression profiles and potential biomarkers of exposure[J]. Environmental Pollution, 2012, 167:163-170
Buznikov G A, Lambert H W, Lauder J M. Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis[J]. Cell and Tissue Research, 2001, 305(2):177-186
Airhart M J, Lee D H, Wilson T D, et al. Adverse effects of serotonin depletion in developing zebrafish[J]. Neurotoxicology and Teratology, 2012, 34(1):152-160
Sourbron J, Schneider H, Kecskés A, et al. Serotonergic modulation as effective treatment for dravet syndrome in a zebrafish mutant model[J]. ACS Chemical Neuroscience, 2016, 7(5):588-598
Cunha V, Rodrigues P, Santos M M, et al. Fluoxetine modulates the transcription of genes involved in serotonin, dopamine and adrenergic signalling in zebrafish embryos[J]. Chemosphere, 2018, 191:954-961
Carty D R, Hala D, Huggett D B. The effects of sertraline on fathead minnow (Pimephales promelas) growth and steroidogenesis[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(6):753-757
Knobil E. The neuroendocrine control of the menstrual cycle[J]. Recent Progress in Hormone Research, 1980, 36:53-88
Prasad P, Ogawa S, Parhar I S. Serotonin reuptake inhibitor citalopram inhibits GnRH synthesis and spermatogenesis in the male zebrafish[J]. Biology of Reproduction, 2015, 93(4):102
White S A, Kasten T L, Bond C T, et al. Three gonadotropin-releasing hormone genes in one organism suggest novel roles for an ancient peptide[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(18):8363-8367
Parhar I S. Cell migration and evolutionary significance of GnRH subtypes[J]. Progress in Brain Research, 2002, 141:3-17
McCann S M, Karanth S, Mastronardi C A, et al. Hypothalamic control of gonadotropin secretion[J]. Progress in Brain Research, 2002, 141:151-164
Orth J M. The role of follicle-stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats[J]. Endocrinology, 1984, 115(4):1248-1255
Pierce J G, Parsons T F. Glycoprotein Hormones:Similar Molecules with Different Functions[M]//Sigman D S, Brazier M AB. The Evolution of Protein Structure and Function. Amsterdam:Elsevier, 1980:99-117
McDonald M D. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2017, 197:19-31
Schultz M M, Painter M M, Bartell S E, et al. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows[J]. Aquatic Toxicology, 2011, 104(1-2):38-47
Silva de Assis H C, Simmons D B, Zamora J M, et al. Estrogen-like effects in male goldfish co-exposed to fluoxetine and 17 alpha-ethinylestradiol[J]. Environmental Science & Technology, 2013, 47(10):5372-5382
Foran C M, Weston J, Slattery M, et al. Reproductive assessment of Japanese medaka (Oryzias latipes) following a four-week fluoxetine (SSRI) exposure[J]. Archives of Environmental Contamination and Toxicology, 2004, 46(4):511-517
Mennigen J A, Lado W E, Zamora J M, et al. Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus[J]. Aquatic Toxicology, 2010, 100(4):354-364
Fursdon J B, Martin J M, Bertram M G, et al. The pharmaceutical pollutant fluoxetine alters reproductive behaviour in a fish independent of predation risk[J]. Science of the Total Environment, 2019, 650(Pt 1):642-652
Bertram M G, Ecker T E, Wong B B M, et al. The antidepressant fluoxetine alters mechanisms of pre- and post-copulatory sexual selection in the eastern mosquitofish (Gambusia holbrooki)[J]. Environmental Pollution, 2018, 238:238-247
Weinberger J Ⅱ, Klaper R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow)[J]. Aquatic Toxicology, 2014, 151:77-83
Lister A, Regan C, van Zwol J, et al. Inhibition of egg production in zebrafish by fluoxetine and municipal effluents:A mechanistic evaluation[J]. Aquatic Toxicology, 2009, 95(4):320-329
Brodin T, Piovano S, Fick J, et al. Ecological effects of pharmaceuticals in aquatic systems-Impacts through behavioural alterations[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2014, 369(1656):20130580
Rand-Weaver M, Margiotta-Casaluci L, Patel A, et al. The read-across hypothesis and environmental risk assessment of pharmaceuticals[J]. Environmental Science & Technology, 2013, 47(20):11384-11395
Huggett D B, Cook J C, Ericson J F, et al. A theoretical model for utilizing mammalian pharmacology and safety data to prioritize potential impacts of human pharmaceuticals to fish[J]. Human and Ecological Risk Assessment:An International Journal, 2003, 9(7):1789-1799
Saaristo M, McLennan A, Johnstone C P, et al. Impacts of the antidepressant fluoxetine on the anti-predator behaviours of wild guppies (Poecilia reticulata)[J]. Aquatic Toxicology, 2017, 183:38-45
Forsatkar M N, Nematollahi M A, Amiri B M, et al. Fluoxetine inhibits aggressive behaviour during parental care in male fighting fish (Betta splendens, Regan)[J]. Ecotoxicology, 2014, 23(9):1794-1802
Martin J M, Bertram M G, Saaristo M, et al. Antidepressants in surface waters:Fluoxetine influences mosquitofish anxiety-related behavior at environmentally relevant levels[J]. Environmental Science & Technology, 2019, 53(10):6035-6043
Ansai S, Hosokawa H, Maegawa S, et al. Chronic fluoxetine treatment induces anxiolytic responses and altered social behaviors in medaka, Oryzias latipes[J]. Behavioural Brain Research, 2016, 303:126-136
Valenti T W, Gould G G, Berninger J P, et al. Human therapeutic plasma levels of the selective serotonin reuptake inhibitor (SSRI) sertraline decrease serotonin reuptake transporter binding and shelter-seeking behavior in adult male fathead minnows[J]. Environmental Science & Technology, 2012, 46(4):2427-2435
Nielsen S V, Frausing M, Henriksen P G, et al. The psychoactive drug escitalopram affects foraging behavior in zebrafish (Danio rerio)[J]. Environmental Toxicology and Chemistry, 2019, 38(9):1902-1910
Nielsen S V, Kellner M, Henriksen P G, et al. The psychoactive drug Escitalopram affects swimming behaviour and increases boldness in zebrafish (Danio rerio)[J]. Ecotoxicology, 2018, 27(4):485-497