Wang L Z, Sasaki T. Titanium oxide nanosheets:Graphene analogues with versatile functionalities[J]. Chemical Reviews, 2014, 114(19):9455-9486
Venkatasubbu G D, Baskar R, Anusuya T, et al. Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens[J]. Colloids and Surfaces B:Biointerfaces, 2016, 148:600-606
Wang Y N, Ma J Z, Xu Q N, et al. Fabrication of antibacterial casein-based ZnO nanocomposite for flexible coatings[J]. Materials & Design, 2017, 113:240-245
Kubacka A, Serrano C, Ferrer M, et al. High-performance dual-action polymer-TiO2 nanocomposite films via melting processing[J]. Nano Letters, 2007, 7(8):2529-2534
赵秋艳, 李汴生. 新型铁营养强化剂——超微细元素铁粉[J]. 食品与发酵工业, 2001, 27(6):67-69 Zhao Q Y, Li B S. A new iron dietary supplement-ultramicro iron powder[J]. Food and Fermentation Industries, 2001, 27(6):67-69(in Chinese)
Kumar P, Mahajan P, Kaur R, et al. Nanotechnology and its challenges in the food sector:A review[J]. Materials Today Chemistry, 2020, 17:100332
Lim J H, Bae D, Fong A. Titanium dioxide in food products:Quantitative analysis using ICP-MS and Raman spectroscopy[J]. Journal of Agricultural and Food Chemistry, 2018, 66(51):13533-13540
Grissa I, Guezguez S, Ezzi L, et al. The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain[J]. Environmental Science and Pollution Research, 2016, 23(20):20205-20213
Long T C, Tajuba J, Sama P, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro[J]. Environmental Health Perspectives, 2007, 115(11):1631-1637
Song B, Liu J, Feng X L, et al. A review on potential neurotoxicity of titanium dioxide nanoparticles[J]. Nanoscale Research Letters, 2015, 10(1):1042
Chen I C, Hsiao I L, Lin H C, et al. Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability[J]. Environmental Toxicology and Pharmacology, 2016, 47:108-118
Butovsky O, Weiner H L. Microglial signatures and their role in health and disease[J]. Nature Reviews Neuroscience, 2018, 19(10):622-635
Kettenmann H, Hanisch U K, Noda M, et al. Physiology of microglia[J]. Physiological Reviews, 2011, 91(2):461-553
Cheng M, Yang L, Dong Z P, et al. Folic acid deficiency enhanced microglial immune response via the Notch1/nuclear factor kappa B p65 pathway in hippocampus following rat brain I/R injury and BV2 cells[J]. Journal of Cellular and Molecular Medicine, 2019, 23(7):4795-4807
Rihane N, Nury T, M'rad I, et al. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles:Toxicity and cellular responses[J]. Environmental Science and Pollution Research, 2016, 23(10):9690-9699
Valentini X, Deneufbourg P, Paci P, et al. Morphological alterations induced by the exposure to TiO2 nanoparticles in primary cortical neuron cultures and in the brain of rats[J]. Toxicology Reports, 2018, 5:878-889
Wang Y C, He F, Feng F, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses[J]. Cancer Research, 2010, 70(12):4840-4849
Wu F, Luo T, Mei Y W, et al. Simvastatin alters M1/M2 polarization of murine BV2 microglia via Notch signaling[J]. Journal of Neuroimmunology, 2018, 316:56-64
Grandbarbe L, Michelucci A, Heurtaux T, et al. Notch signaling modulates the activation of microglial cells[J]. Glia, 2007, 55(15):1519-1530
Song B, Zhou T, Yang W L, et al. Contribution of oxidative stress to TiO2 nanoparticle-induced toxicity[J]. Environmental Toxicology and Pharmacology, 2016, 48:130-140
Zhang R, Niu Y J, Li Y W, et al. Acute toxicity study of the interaction between titanium dioxide nanoparticles and lead acetate in mice[J]. Environmental Toxicology and Pharmacology, 2010, 30(1):52-60
Hughes V. Microglia:The constant gardeners[J]. Nature, 2012, 485(7400):570-572
Cao Q, Lu J, Kaur C, et al. Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells[J]. Glia, 2008, 56(11):1224-1237