Boyles A L, Blain R B, Rochester J R, et al. Systematic review of community health impacts of mountaintop removal mining[J]. Environment International, 2017, 107:163-172
Paul A G, Jones K C, Sweetman A J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate[J]. Environmental Science & Technology, 2009, 43(2):386-392
Wang T, Wang Y W, Liao C Y, et al. Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm Convention on persistent organic pollutants[J]. Environmental Science & Technology, 2009, 43(14):5171-5175
中华人民共和国生态环境部. 重点管控新污染物清单(2021年版)[R]. 北京:中华人民共和国生态环境部, 2021
Peden-Adams M M, Stuckey J E, Gaworecki K M, et al. Developmental toxicity in white leghorn chickens following in ovo exposure to perfluorooctane sulfonate (PFOS)[J]. Reproductive Toxicology, 2009, 27(3-4):307-318
Kennedy G L Jr, Butenhoff J L, Olsen G W, et al. The toxicology of perfluorooctanoate[J]. Critical Reviews in Toxicology, 2004, 34(4):351-384
Betts K S. Perfluoroalkyl acids:What is the evidence telling us?[J]. Environmental Health Perspectives, 2007, 115(5):A250-A256
Lin C Y, Chen P C, Lin Y C, et al. Association among serum perfluoroalkyl chemicals, glucose homeostasis, and metabolic syndrome in adolescents and adults[J]. Diabetes Care, 2009, 32(4):702-707
Liu H S, Wen L L, Chu P L, et al. Association among total serum isomers of perfluorinated chemicals, glucose homeostasis, lipid profiles, serum protein and metabolic syndrome in adults:NHANES, 2013-2014[J]. Environmental Pollution, 2018, 232:73-79
Cardenas A, Gold D R, Hauser R, et al. Plasma concentrations of per- and polyfluoroalkyl substances at baseline and associations with glycemic indicators and diabetes incidence among high-risk adults in the diabetes prevention program trial[J]. Environmental Health Perspectives, 2017, 125(10):107001
Cakmak S, Lukina A, Karthikeyan S, et al. The association between blood PFAS concentrations and clinical biochemical measures of organ function and metabolism in participants of the Canadian Health Measures Survey (CHMS)[J]. The Science of the Total Environment, 2022, 827:153900
Chen A M, Jandarov R, Zhou L, et al. Association of perfluoroalkyl substances exposure with cardiometabolic traits in an island population of the eastern Adriatic Coast of Croatia[J]. The Science of the Total Environment, 2019, 683:29-36
Behr A C, Kwiatkowski A, Ståhlman M, et al. Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells[J]. Archives of Toxicology, 2020, 94(5):1673-1686
Cui Y, Lv S, Liu J, et al. Chronic perfluorooctanesulfonic acid exposure disrupts lipid metabolism in zebrafish[J]. Human & Experimental Toxicology, 2017, 36(3):207-217
Yi S J, Chen P Y, Yang L P, et al. Probing the hepatotoxicity mechanisms of novel chlorinated polyfluoroalkyl sulfonates to zebrafish larvae:Implication of structural specificity[J]. Environment International, 2019, 133(Pt B):105262
Johnson C H, Ivanisevic J, Siuzdak G. Metabolomics:Beyond biomarkers and towards mechanisms[J]. Nature Reviews Molecular Cell Biology, 2016, 17(7):451-459
Zhang L B, Sun W, Chen H G, et al. Transcriptome analysis of acute exposure of the Manila clam, Ruditapes philippinarum to perfluorooctane sulfonate (PFOS)[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2020, 231:108736
Ortiz-Villanueva E, Jaumot J, Martínez R, et al. Assessment of endocrine disruptors effects on zebrafish (Danio rerio) embryos by untargeted LC-HRMS metabolomic analysis[J]. The Science of the Total Environment, 2018, 635:156-166
Beale D J, Hillyer K, Nilsson S, et al. Bioaccumulation and metabolic response of PFAS mixtures in wild-caught freshwater turtles (Emydura macquarii macquarii) using omics-based ecosurveillance techniques[J]. The Science of the Total Environment, 2022, 806(Pt 3):151264
Oakes K D, Sibley P K, Martin J W, et al. Short-term exposures of fish to perfluorooctane sulfonate:Acute effects on fatty acyl-coa oxidase activity, oxidative stress, and circulating sex steroids[J]. Environmental Toxicology and Chemistry, 2005, 24(5):1172-1181
Zhang L M, Rimal B, Nichols R G, et al. Perfluorooctane sulfonate alters gut microbiota-host metabolic homeostasis in mice[J]. Toxicology, 2020, 431:152365
Deng P, Durham J, Liu J P, et al. Metabolomic, lipidomic, transcriptomic, and metagenomic analyses in mice exposed to PFOS and fed soluble and insoluble dietary fibers[J]. Environmental Health Perspectives, 2022, 130(11):117003
Li Z J, Lin Z Y, Ji S Q, et al. Perfluorooctanesulfonic acid exposure altered hypothalamic metabolism and disturbed male fecundity[J]. The Science of the Total Environment, 2022, 844:156881
Jin Y H, Liu W, Sato I, et al. PFOS and PFOA in environmental and tap water in China[J]. Chemosphere, 2009, 77(5):605-611
Zareitalabad P, Siemens J, Hamer M, et al. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater-A review on concentrations and distribution coefficients[J]. Chemosphere, 2013, 91(6):725-732
Benford D, Boer J, Carere A, et al. Opinion of the Scientific Panel on contaminants in the food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts[J]. EFSA Journal, 2008, 653:1-131
Kell D B, Brown M, Davey H M, et al. Metabolic footprinting and systems biology:The medium is the message[J]. Nature Reviews Microbiology, 2005, 3(7):557-565
Wang X J, Sun H, Zhang A H, et al. Potential role of metabolomics apporoaches in the area of traditional Chinese medicine:As pillars of the bridge between Chinese and Western medicine[J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55(5):859-868
Winder C L, Cornmell R, Schuler S, et al. Metabolic fingerprinting as a tool to monitor whole-cell biotransformations[J]. Analytical and Bioanalytical Chemistry, 2011, 399(1):387-401
Zhang A H, Sun H, Wang P, et al. Future perspectives of personalized medicine in traditional Chinese medicine:A systems biology approach[J]. Complementary Therapies in Medicine, 2012, 20(1-2):93-99
Nair A B, Jacob S. A simple practice guide for dose conversion between animals and human[J]. Journal of Basic and Clinical Pharmacy, 2016, 7(2):27-31
Alam M N, Han X, Nan B R, et al. Chronic low-level perfluorooctane sulfonate (PFOS) exposure promotes testicular steroidogenesis through enhanced histone acetylation[J]. Environmental Pollution, 2021, 284:117518
Forsthuber M, Kaiser A M, Granitzer S, et al. Albumin is the major carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in human plasma[J]. Environment International, 2020, 137:105324
Olsen G W, Burris J M, Ehresman D J, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers[J]. Environmental Health Perspectives, 2007, 115(9):1298-1305
Austin M E, Kasturi B S, Barber M, et al. Neuroendocrine effects of perfluorooctane sulfonate in rats[J]. Environmental Health Perspectives, 2003, 111(12):1485-1489
Chang S C, Thibodeaux J R, Eastvold M L, et al. Negative bias from analog methods used in the analysis of free thyroxine in rat serum containing perfluorooctanesulfonate (PFOS)[J]. Toxicology, 2007, 234(1-2):21-33
Conley J M, Lambright C S, Evans N, et al. Developmental toxicity of Nafion byproduct 2(NBP2) in the Sprague-Dawley rat with comparisons to hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) and perfluorooctane sulfonate (PFOS)[J]. Environment International, 2022, 160:107056
Jin R, McConnell R, Catherine C, et al. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in children:An untargeted metabolomics approach[J]. Environment International, 2020, 134:105220
Hu X, Li S Z, Cirillo P M, et al. Reprint of "metabolome wide association study of serum poly and perfluoroalkyl substances (PFASs) in pregnancy and early postpartum"[J]. Reproductive Toxicology, 2020, 92:120-128
Alderete T L, Jin R, Walker D I, et al. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children:A proof-of-concept analysis[J]. Environment International, 2019, 126:445-453
Huang Q Y, Hu D Y, Wang X F, et al. The modification of indoor PM2.5 exposure to chronic obstructive pulmonary disease in Chinese elderly people:A meet-in-metabolite analysis[J]. Environment International, 2018, 121(Pt 2):1243-1252
Zhang J, Mu X L, Xia Y K, et al. Metabolomic analysis reveals a unique urinary pattern in normozoospermic infertile men[J]. Journal of Proteome Research, 2014, 13(6):3088-3099
Steenland K, Tinker S, Frisbee S, et al. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant[J]. American Journal of Epidemiology, 2009, 170(10):1268-1278
Wan H T, Zhao Y G, Wei X, et al. PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport[J]. Biochimica et Biophysica Acta, 2012, 1820(7):1092-1101
Imes C C, Austin M A. Low-density lipoprotein cholesterol, apolipoprotein B, and risk of coronary heart disease:From familial hyperlipidemia to genomics[J]. Biological Research for Nursing, 2013, 15(3):292-308
Li Y, Barregard L, Xu Y Y, et al. Associations between perfluoroalkyl substances and serum lipids in a Swedish adult population with contaminated drinking water[J]. Environmental Health:A Global Access Science Source, 2020, 19(1):33
Bijland S, Rensen P C, Pieterman E J, et al. Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-Leiden CETP mice[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2011, 123(1):290-303
Cheng J F, Lv S P, Nie S F, et al. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish[J]. Aquatic Toxicology, 2016, 176:45-52
Martínez R, Navarro-Martín L, Luccarelli C, et al. Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos[J]. The Science of the Total Environment, 2019, 674:462-471
Fragki S, Dirven H, Fletcher T, et al. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans:What do we know and what not?[J]. Critical Reviews in Toxicology, 2021, 51(2):141-164
Chen P, Goldberg D E, Kolb B, et al. Inosine induces axonal rewiring and improves behavioral outcome after stroke[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(13):9031-9036
Yegutkin G G, Samburski S S, Jalkanen S. Soluble purine-converting enzymes circulate in human blood and regulate extracellular ATP level via counteracting pyrophosphatase and phosphotransfer reactions[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2003, 17(10):1328-1330
Gong X, Yang C X, Hong Y J, et al. PFOA and PFOS promote diabetic renal injury in vitro by impairing the metabolisms of amino acids and purines[J]. The Science of the Total Environment, 2019, 676:72-86
Jiang L L, Hong Y J, Xie G S, et al. Comprehensive multi-omics approaches reveal the hepatotoxic mechanism of perfluorohexanoic acid (PFHxA) in mice[J]. The Science of the Total Environment, 2021, 790:148160
Ni X L, Hu G H, Cai X. The success and the challenge of all-trans retinoic acid in the treatment of cancer[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(sup1):S71-S80
Li Y Q, Lu X Y, Yu N Y, et al. Exposure to legacy and novel perfluoroalkyl substance disturbs the metabolic homeostasis in pregnant women and fetuses:A metabolome-wide association study[J]. Environment International, 2021, 156:106627
Li C H, Jiang L D, Qi Y, et al. Integration of metabolomics and proteomics reveals the underlying hepatotoxic mechanism of perfluorooctane sulfonate (PFOS) and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) in primary human hepatocytes[J]. Ecotoxicology and Environmental Safety, 2023, 249:114361