Burstyn I, Kromhout H, Partanen T, et al. Polycyclic aromatic hydrocarbons and fatal ischemic heart disease[J]. Epidemiology, 2005, 16(6):744-750
Lee M S, Magari S, Christiani D C. Cardiac autonomic dysfunction from occupational exposure to polycyclic aromatic hydrocarbons[J]. Occupational and Environmental Medicine, 2011, 68(7):474-478
Huang L, Gao D, Zhang Y, et al. Exposure to low dose benzo[a]pyrene during early life stages causes symptoms similar to cardiac hypertrophy in adult zebrafish[J]. Journal of Hazardous Materials, 2014, 276:377-382
Huang L, Wang C, Zhang Y, et al. Benzo[a]pyrene exposure influences the cardiac development and the expression of cardiovascular relative genes in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2012, 87(4):369-375
Ang Y S, Rivas R N, Ribeiro A J S, et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis[J]. Cell, 2016, 167(7):1734-1749
Zhang X, Chen S, Yoo S, et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death[J]. Cell, 2008, 135(6):1017-1027
Pruneda-Álvarez L G, Pérez-Vázquez F J, Ruíz-Vera T, et al. Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment[J]. Environmental Science and Pollution Research, 2016, 23(7):6816-6825
Hao J N, Yan B. Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanidefunctionalized metal-organic framework sensor[J]. Advanced Functional Materials, 2017, 27(6):1603856
de Oliveira Galvão M F, de Queiroz J D F, de Souza Fernandes Duarte E, et al. Characterization of the particulate matter and relationship between buccal micronucleus and urinary 1-hydroxypyrene levels among cashew nut roasting workers[J]. Environmental Pollution, 2017, 220:659-671
Ovchinnikova E, Hoes M, Ustyantsev K, et al. Modeling human cardiac hypertrophy in stem cell-derived cardiomyocytes[J]. Stem Cell Reports, 2018, 10(3):794-807
Sirenko O, Grimm F A, Ryan K R, et al. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model[J]. Toxicology and Applied Pharmacology, 2017, 322:60-74
An J, Yin L, Shang Y, et al. The combined effects of BDE47 and BaP on oxidatively generated DNA damage in L02 cells and the possible molecular mechanism[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2011, 721(2):192-198
Gómez-Mendikute A, Etxeberria A, Olabarrieta I, et al. Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo (a) pyrene[J]. Marine Environmental Research, 2002, 54(3-5):431-436
Zhu W, Cromie M M, Cai Q, et al. Curcumin and vitamin E protect against adverse effects of benzo[a] pyrene in lung epithelial cells[J]. PLoS One, 2014, 9(3):e92992
Yuan L, Liu J, Deng H, et al. Benzo[a]pyrene induces autophagic and pyroptotic death simultaneously in HL-7702 human normal liver cells[J]. Journal of Agricultural and Food Chemistry, 2017, 65(44):9763-9773
Stepnik M, Spryszyńska S, Smok-Pieniazek A, et al. The modulating effect of ATM, ATR, DNA-PK inhibitors on the cytotoxicity and genotoxicity of benzo[a]pyrene in human hepatocellular cancer cell line HepG2[J]. Environmental Toxicology and Pharmacology, 2015, 40(3):988-996
Wang Y, Zhai W, Wang H, et al. Benzo (a) pyrene promotes A549 cell migration and invasion through up-regulating Twist[J]. Archives of Toxicology, 2015, 89(3):451-458
Kim S M, Lee H M, Hwang K A, et al. Benzo (a) pyrene induced cell cycle arrest and apoptosis in human choriocarcinoma cancer cells through reactive oxygen speciesinduced endoplasmic reticulum-stress pathway[J]. Food and Chemical Toxicology, 2017, 107:339-348
Zhang H M, Nie J S, Li X, et al. Characteristic analysis of peripheral blood mononuclear cell apoptosis in coke oven workers[J]. Journal of Occupational Health, 2012, 54(1):44-50
Yin G, Wang X, Sun Y, et al. Bioaccumulation and oxidative stress in submerged macrophyte Ceratophyllum demersum L. upon exposure to pyrene[J]. Environmental Toxicology, 2008, 23(3):328-336
Yin Y, Jia J, Guo H Y, et al. Pyrene-stimulated reactive oxygen species generation and oxidative damage in Carassius auratus[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(2):162-170
Shimada T, Takenaka S, Murayama N, et al. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P4502A13[J]. Xenobiotica, 2016, 46(3):1-14
Zapata-Pérez O, Gold-Bouchot G, Ortega A, et al. Effect of pyrene on hepatic cytochrome P4501A (CYP1A) expression in nile tilapia (Oreochromis niloticus)[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(4):477-485
Freitas F, Brucker N, Durgante J, et al. Urinary 1-hydroxypyrene is associated with oxidative stress and inflammatory biomarkers in acute myocardial infarction[J]. International Journal of Environmental Research and Public Health, 2014, 11(9):9024-9037
Chen Y R, Zweier J L. Cardiac mitochondria and reactive oxygen species generation[J]. Circulation Research, 2014, 114(3):524-537
Giordano F J. Oxygen, oxidative stress, hypoxia, and heart failure[J]. Journal of Clinical Investigation, 2005, 115(3):500-508
von Harsdorf R, Li P F, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis[J]. Circulation, 1999, 99(22):2934-2941
Shiizaki K, Kawanishi M, Yagi T. Modulation of benzo[a] pyrene-DNA adduct formation by CYP1 inducer and inhibitor[J]. Genes and Environment, 2017, 39(1):14
Willis A J, Indra R, Wohak L E, et al. The impact of chemotherapeutic drugs on the CYP1A1-catalysed metabolism of the environmental carcinogen benzo[a]pyrene:Effects in human colorectal HCT116 TP53(+/+), TP53(+/-) and TP53(-/-) cells[J]. Toxicology, 2018, 398-399:1-12
Bersell K, Choudhury S, Mollova M, et al. Moderate and high amounts of tamoxifen in MHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death[J]. Disease Models & Mechanisms, 2013, 6(6):1459-1469
Higo T, Naito A T, Sumida T, et al. DNA single-strand break-induced DNA damage response causes heart failure[J]. Nature Communications, 2017, 8:15104
Minamino T, Komuro I. Vascular cell senescence:Contribution to atherosclerosis[J]. Circulation Research, 2007, 100(1):15-26
Dong R, Xu X, Li G, et al. Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state[J]. PLoS One, 2013, 8(10):e77034