中国化工信息中心. 中国化学工业年鉴(2014)[M]. 北京: 中国化工信息中心, 2014: 266-269
庄绪宁, 李敏霞, 宋小龙, 等. 中国典型液晶显示设备中有毒有害物质存量及其污染流向分析[J]. 环境污染与防治, 2021, 43(4): 445-452 Zhuang X N, Li M X, Song X L, et al. Stocks of hazardous substance in typical liquid crystal display equipment in China and its pollution flow analysis [J]. Environmental Pollution & Control, 2021, 43(4): 445-452 (in Chinese)
Li J H, Gao S, Duan H B, et al. Recovery of valuable materials from waste liquid crystal display panel [J]. Waste Management, 2009, 29(7): 2033-2039
Zhang L G, Wu B, Chen Y, et al. Treatment of liquid crystals and recycling indium for stripping product gained by mechanical stripping process from waste liquid crystal display panels [J]. Journal of Cleaner Production, 2017, 162: 1472-1481
周上群. 苯并呋喃及苯并吡喃类液晶中间体的合成与应用研究[D]. 青岛: 青岛科技大学, 2020: 1-14 Zhou S Q. Synthesis and application of benzofuran and benzopyran liquid crystal intermediates [D]. Qingdao: Qingdao University of Science & Technology, 2020: 1 -14 (in Chinese)
Li J H, Su G Y, Letcher R J, et al. Liquid crystal monomers (LCMs): A new generation of persistent bioaccumulative and toxic (PBT) compounds? [J]. Environmental Science & Technology, 2018, 52(9): 5005-5006
赵怿哲. 基于液晶材料的电磁超材料机理及功能性器件研究[D]. 成都: 电子科技大学, 2019: 22-23 Zhao Y Z. Research on mechanism of electromagnetic metamaterials and functional devices based on liquid crystals [D]. Chengdu: University of Electronic Science and Technology of China, 2019: 22 -23 (in Chinese)
徐晓鹏, 底楠. 液晶材料的分类、发展和国内应用情况[J]. 化工新型材料, 2006, 34(11): 81-83
Su H J, Ren K F, Li R R, et al. Suspect screening of liquid crystal monomers (LCMs) in sediment using an established database covering 1173 LCMs [J]. Environmental Science & Technology, 2022, 56(12): 8061-8070
王宏, 杨霓云, 闫振广, 等. 我国持久性、生物累积性和毒性(PBT)化学物质评价研究[J]. 环境工程技术学报, 2011, 1(5): 414-419 Wang H, Yang N Y, Yan Z G, et al. Study on assessment of persistent, bioaccumulation and toxic chemicals in China [J]. Journal of Environmental Engineering Technology, 2011, 1(5): 414-419 (in Chinese)
黄昱. 羟基自由基引发典型液晶单体的大气转化机制、动力学及毒性研究[D]. 长春: 东北师范大学, 2021: 1-24 Huang Y. ·OH-initiated atmospheric transformation mechanism, kinetics and toxicity of typical liquid crystal monomers [D]. Changchun: Northeast Normal University, 2021 : 1-24 (in Chinese)
Artabe A E, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review [J]. Food and Chemical Toxicology, 2020, 145: 111677
王斌, 余刚, 黄俊, 等. QSAR/QSPR在POPs归趋与风险评价中的应用[J]. 化学进展, 2007, 19(10): 1612-1619 Wang B, Yu G, Huang J, et al. Application of QSAR/QSPR in fate evaluation and risk assessment of POPs [J]. Progress in Chemistry, 2007, 19(10): 1612-1619 (in Chinese)
Mumtaz M M, Ray M, Crowell S R, et al. Translational research to develop a human PBPK models tool kit-volatile organic compounds (VOCs) [J]. Journal of Toxicology and Environmental Health Part A, 2012, 75(1): 6-24
Zhu M, Su H J, Bao Y R, et al. Experimental determination of octanol-water partition coefficient (KOW) of 39 liquid crystal monomers (LCMs) by use of the shake-flask method [J]. Chemosphere, 2022, 287(Pt 4): 132407
Feng J J, Sun X F, Zeng E Y. Measurement of octanol-air partition coefficients for liquid crystals based on gas chromatography-retention time and its implication in predicting long-range transport potential [J]. Chemosphere, 2021, 282: 131109
Su H J, Shi S B, Zhu M, et al. Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26450-26458
Su H J, Shi S B, Zhu M, et al. Liquid crystal monomers (LCMs) in sediments: Method validation and detection in sediment samples from three typical areas [J]. Environmental Science & Technology, 2021, 55(4): 2336-2345
Jin Q Q, Tao D Y, Lu Y C, et al. New insight on occurrence of liquid crystal monomers: A class of emerging e-waste pollutants in municipal landfill leachate [J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127146
Tao D Y, Jin Q Q, Ruan Y F, et al. Widespread occurrence of emerging E-waste contaminants—Liquid crystal monomers in sediments of the Pearl River Estuary, China [J]. Journal of Hazardous Materials, 2022, 437: 129377
Cheng Z P, Shi Q Y, Wang Y, et al. Electronic-waste-driven pollution of liquid crystal monomers: Environmental occurrence and human exposure in recycling industrial parks [J]. Environmental Science & Technology, 2022, 56(4): 2248-2257
Yao B, Luo Z R, Zhi D, et al. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review [J]. Journal of Hazardous Materials, 2021, 403: 123674
Lu D S, Jin Y E, Feng C, et al. Multi-analyte method development for analysis of brominated flame retardants (BFRs) and PBDE metabolites in human serum [J]. Analytical and Bioanalytical Chemistry, 2017, 409(22): 5307-5317
Zhu M S, Shen M J, Liang X X, et al. Identification of environmental liquid-crystal monomers: A class of new persistent organic pollutants-fluorinated biphenyls and analogues-emitted from E-waste dismantling [J]. Environmental Science & Technology, 2021, 55(9): 5984-5992
Shen M J, Feng Z Q, Liang X X, et al. Release and gas-particle partitioning behavior of liquid crystal monomers during the dismantling of waste liquid crystal display panels in E-waste recycling facilities [J]. Environmental Science & Technology, 2022, 56(5): 3106-3116
Liu Q F, Abbatt J P D. Liquid crystal display screens as a source for indoor volatile organic compounds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(23): e2105067118
Liang X X, Xie R M, Zhu C Y, et al. Comprehensive identification of liquid crystal monomers-biphenyls, cyanobiphenyls, fluorinated biphenyls, and their analogues-in waste LCD panels and the first estimate of their global release into the environment [J]. Environmental Science & Technology, 2021, 55(18): 12424-12436
Liu Q F, Liggio J, Wentzell J, et al. Atmospheric OH oxidation chemistry of particulate liquid crystal monomers: An emerging persistent organic pollutant in air [J]. Environmental Science and Technology Letters, 2020, 7: 646-652
Li C, Huang Y, Zhang X, et al. Atmospheric fate and risk investigation of typical liquid crystal monomers [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(9): 3600-3607
Huang Y, Zhang X, Li C, et al. Atmospheric persistence and toxicity evolution for fluorinated biphenylethyne liquid crystal monomers unveiled by in silico methods [J]. Journal of Hazardous Materials, 2022, 424(Pt B): 127519
He S X, Shen M J, Wu E Y, et al. Molecular structure on the detoxification of fluorinated liquid crystal monomers with reactive oxidation species in the photocatalytic process [J]. Environmental Science and Ecotechnology, 2022, 9: 100141
Woolverton C J, Gustely E, Li L F, et al. Liquid crystal effects on bacterial viability [J]. Liquid Crystals, 2005, 32(4): 417-423
An R, Li Y D, Niu X J, et al. Responses of antioxidant enzymes in catfish exposed to liquid crystals from E-waste [J]. International Journal of Environmental Research and Public Health, 2008, 5(2): 99-103
Feng J J, Sun X F, Zeng E Y. Emissions of liquid crystal monomers from obsolete smartphone screens in indoor settings: Characteristics and human exposure risk [J]. Environmental Science & Technology, 2022, 56(12): 8053-8060
Allen J G, McClean M D, Stapleton H M, et al. Critical factors in assessing exposure to PBDEs via house dust [J]. Environment International, 2008, 34(8): 1085-1091
Zhang S H, Yang M, Li Y H, et al. Occurrence, distribution, and human exposure of emerging liquid crystal monomers (LCMs) in indoor and outdoor dust: A nationwide study [J]. Environment International, 2022, 164: 107295