Clark M D, Halford Z, Herndon C, et al. Evaluation of antibiotic initiation tools in end-of-life care [J]. The American Journal of Hospice & Palliative Care, 2022, 39(3): 274-281
|
Efendi R, Sudarnika E, Wibawan I W T, et al. An assessment of knowledge and attitude toward antibiotic misuse by small-scale broiler farmers in Bogor, West Java, Indonesia [J]. Veterinary World, 2022, 15(3): 707-713
|
颉亚玮, 於驰晟, 李菲菲, 等. 某市污水厂抗生素和抗生素抗性基因的分布特征[J]. 环境科学, 2021, 42(1): 315-322
Xie Y W, Yu C S, Li F F, et al. Distribution characteristics of antibiotics and antibiotic resistance genes in wastewater treatment plants [J]. Environmental Science, 2021, 42(1): 315-322 (in Chinese)
|
Lu S, Lin C Y, Lei K, et al. Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in Eastern China [J]. Water Research, 2020, 184: 116187
|
李敏, 唐剑锋, 陈利顶, 等. 城郊流域源汇景观格局与水体抗生素的关系[J]. 环境科学, 2020, 41(5): 2264-2271
Li M, Tang J F, Chen L D, et al. Relationship between source-sink landscape pattern and antibiotics in surface water in peri-urban watershed [J]. Environmental Science, 2020, 41(5): 2264-2271 (in Chinese)
|
Fu C X, Xu B T, Chen H, et al. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiongan New Area, China, and their relationship with antibiotic resistance genes [J]. The Science of the Total Environment, 2022, 807(Pt 2): 151011
|
Li F F, Chen L J, Bao Y Y, et al. Identification of the priority antibiotics based on their detection frequency, concentration, and ecological risk in urbanized coastal water [J]. The Science of the Total Environment, 2020, 747: 141275
|
Wang H X, Wang N, Wang B, et al. Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children [J]. Environmental Science & Technology, 2016, 50(5): 2692-2699
|
Zhang H N, Zhou Y F, Guo S Y, et al. Prevalence and characteristics of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae isolated from rural well water in Taian, China, 2014 [J]. Environmental Science and Pollution Research, 2015, 22(15): 11488-11492
|
Cho I, Blaser M J. The human microbiome: At the interface of health and disease [J]. Nature Reviews Genetics, 2012, 13(4): 260-270
|
Hidron A I, Edwards J R, Patel J, et al. NHSN annual update: Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007 [J]. Infection Control and Hospital Epidemiology, 2008, 29(11): 996-1011
|
Pazda M, Kumirska J, Stepnowski P, et al. Antibiotic resistance genes identified in wastewater treatment plant systems - A review [J]. The Science of the Total Environment, 2019, 697: 134023
|
杨凤霞, 毛大庆, 罗义, 等. 环境中抗生素抗性基因的水平传播扩散[J]. 应用生态学报, 2013, 24(10): 2993-3002
Yang F X, Mao D Q, Luo Y, et al. Horizontal transfer of antibiotic resistance genes in the environment [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2993-3002 (in Chinese)
|
Jia Y Q, Wang Z Q, Fang D, et al. Acetaminophen promotes horizontal transfer of plasmid-borne multiple antibiotic resistance genes [J]. Science of the Total Environment, 2021, 782: 146916
|
Duckworth D H. “Who discovered bacteriophage?” [J]. Bacteriological Reviews, 1976, 40(4): 793-802
|
Davison J. Genetic exchange between bacteria in the environment [J]. Plasmid, 1999, 42(2): 73-91
|
McGowan E. Comment on “Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado” [J]. Environmental Science & Technology, 2007, 41(7): 2651-2652
|
Lin Z B, Yuan T, Zhou L, et al. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment [J]. Environmental Geochemistry and Health, 2021, 43(5): 1741-1758
|
Gao H, Zhang L X, Lu Z H, et al. Complex migration of antibiotic resistance in natural aquatic environments [J]. Environmental Pollution, 2018, 232: 1-9
|
Liao J Q, Huang H N, Chen Y G. CO2 promotes the conjugative transfer of multiresistance genes by facilitating cellular contact and plasmid transfer [J]. Environment International, 2019, 129: 333-342
|
Xie S S, Gu A Z, Cen T Y, et al. The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes [J]. Science of the Total Environment, 2019, 683: 116-123
|
Guo M T, Yuan Q B, Yang J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater [J]. Environmental Science & Technology, 2015, 49(9): 5771-5778
|
Li H, Song R Y, Wang Y Y, et al. Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma [J]. Water Research, 2021, 204: 117630
|
宋峙嶙, 李圆圆, 熊忆茗, 等. 内分泌干扰物测试技术和评估体系[J]. 中国环境科学, 2023, 43(5): 2601-2612
Song S L, Li Y Y, Xiong Y M, et al. Testing techniques and assessment systems for endocrine disrupting chemicals [J]. China Environmental Science, 2023, 43(5): 2601-2612 (in Chinese)
|
Daughton C G. Pharmaceuticals and Personal Care Products in the Environment: Overarching Issues and Overview [M]// Daughton C G, Jones-Lepp T L. Pharmaceuticals and Care Products in the Environment. Washington DC: American Chemical Society, 2001: 2-38
|
周培亮, 熊倩, 吴颖琳, 等. 浮萍在PPCPs修复中的应用与机理研究[J]. 生态毒理学报, 2022, 17(5): 128-138
Zhou P L, Xiong Q, Wu Y L, et al. Research advances on application and mechanisms of duckweed in bioremediation of PPCPs [J]. Asian Journal of Ecotoxicology, 2022, 17(5): 128-138 (in Chinese)
|
李敏, 蔡凤珊, 秦瑞欣, 等. 重庆市典型行业废水中16种全氟化合物污染特征[J]. 生态毒理学报, 2021, 16(5): 44-58
Li M, Cai F S, Qin R X, et al. Pollution status of sixteen per- and polyfluoroalkyl substances in wastewater of typical industries in Chongqing City [J]. Asian Journal of Ecotoxicology, 2021, 16(5): 44-58 (in Chinese)
|
邹义龙, 吴永明, 邓觅, 等. 新型溴代阻燃剂TBB和TBPH的生态毒理研究进展[J]. 生态毒理学报, 2021, 16(2): 72-85
Zou Y L, Wu Y M, Deng M, et al. A review on the ecotoxicology of novel brominated flame retardants TBB and TBPH [J]. Asian Journal of Ecotoxicology, 2021, 16(2): 72-85 (in Chinese)
|
魏文哲, 罗家怡, 赵佳焱, 等. 饮用水中新型环状消毒副产物的毒性研究进展[J]. 生态毒理学报, 2021, 16(6): 87-103
Wei W Z, Luo J Y, Zhao J Y, et al. Research progress on toxicity of new cyclic disinfection byproducts in drinking water [J]. Asian Journal of Ecotoxicology, 2021, 16(6): 87-103 (in Chinese)
|
Meng Y, Liu W Y, Fiedler H, et al. Fate and risk assessment of emerging contaminants in reclaimed water production processes [J]. Frontiers of Environmental Science & Engineering, 2021, 15(5): 104
|
Chinnaiyan P, Thampi S G, Kumar M, et al. Pharmaceutical products as emerging contaminant in water: Relevance for developing nations and identification of critical compounds for Indian environment [J]. Environmental Monitoring and Assessment, 2018, 190(5): 288
|
Yu Z G, Wang Y, Lu J, et al. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer [J]. The ISME Journal, 2021, 15(7): 2117-2130
|
Li Z Q, Gao J F, Guo Y, et al. Enhancement of antibiotic resistance dissemination by artificial sweetener acesulfame potassium: Insights from cell membrane, enzyme, energy supply and transcriptomics [J]. Journal of Hazardous Materials, 2022, 422: 126942
|
Li X, Wen C, Liu C, et al. Herbicide promotes the conjugative transfer of multi-resistance genes by facilitating cellular contact and plasmid transfer [J]. Journal of Environmental Sciences (China), 2022, 115: 363-373
|
Zhang H N, Liu J B, Wang L, et al. Glyphosate escalates horizontal transfer of conjugative plasmid harboring antibiotic resistance genes [J]. Bioengineered, 2021, 12(1): 63-69
|
Pearce H, Messager S, Maillard J Y. Effect of biocides commonly used in the hospital environment on the transfer of antibiotic-resistance genes in Staphylococcus aureus [J]. Journal of Hospital Infection, 1999, 43(2): 101-107
|
Guo A Y, Zhou Q X, Bao Y Y, et al. Prochloraz alone or in combination with nano-CuO promotes the conjugative transfer of antibiotic resistance genes between Escherichia coli in pure water [J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127761
|
Jutkina J, Marathe N P, Flach C F, et al. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations [J]. The Science of the Total Environment, 2018, 616-617: 172-178
|
Wesgate R, Fanning S, Hu Y, et al. Effect of exposure to chlorhexidine residues at “during use” concentrations on antimicrobial susceptibility profile, efflux, conjugative plasmid transfer, and metabolism of Escherichia coli [J]. Antimicrobial Agents and Chemotherapy, 2020, 64(12): e01131-e01120
|
Jia Y Q, Yang B Q, Shi J R, et al. Melatonin prevents conjugative transfer of plasmid-mediated antibiotic resistance genes by disrupting proton motive force [J]. Pharmacological Research, 2022, 175: 105978
|
Peterson G, Kumar A, Gart E, et al. Catecholamines increase conjugative gene transfer between enteric bacteria [J]. Microbial Pathogenesis, 2011, 51(1-2): 1-8
|
Feng M B, Ye C S, Zhang S Q, et al. Bisphenols promote the conjugative transfer of antibiotic resistance genes without damaging cell membrane [J]. Environmental Chemistry Letters, 2022, 20(3): 1553-1560
|
杨雨桐, 周宏瑞, 杨晓波, 等. 双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 191-202
Yang Y T, Zhou H R, Yang X B, et al. Bisphenol A promotes conjugative transfer of antibiotic resistance genes mediated by pheromone-responsive plasmid in Enterococcus faecalis [J]. Asian Journal of Ecotoxicology, 2022, 17(1): 191-202 (in Chinese)
|
Yang Y T, Yang X B, Zhou H R, et al. Bisphenols promote the pheromone-responsive plasmid-mediated conjugative transfer of antibiotic resistance genes in Enterococcus faecalis [J]. Environmental Science & Technology, 2022, 56(24): 17653-17662
|
Wang Y, Lu J, Mao L K, et al. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera [J]. The ISME Journal, 2019, 13(2): 509-522
|
Guo Y, Gao J F, Cui Y C, et al. Chloroxylenol at environmental concentrations can promote conjugative transfer of antibiotic resistance genes by multiple mechanisms [J]. The Science of the Total Environment, 2022, 816: 151599
|
Yang B Q, Wang Z Q, Jia Y Q, et al. Paclitaxel and its derivative facilitate the transmission of plasmid-mediated antibiotic resistance genes through conjugative transfer [J]. The Science of the Total Environment, 2022, 810: 152245
|
Lu J, Wang Y, Li J, et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera [J]. Environment International, 2018, 121(Pt 2): 1217-1226
|
Cen T Y, Zhang X Y, Xie S S, et al. Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms [J]. Environment International, 2020, 138: 105544
|
Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria [J]. Nature, 2018, 555(7698): 623-628
|
Wang Y, Lu J, Engelstädter J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation [J]. The ISME Journal, 2020, 14(8): 2179-2196
|
纪丽鹏, 王月, 褚福浩, 等. 纳米材料对微藻的生态毒性效应及机理[J]. 生态毒理学报, 2022, 17(5): 175-189
Ji L P, Wang Y, Chu F H, et al. Ecological effects and toxic mechanisms of nanomaterials to microalgae [J]. Asian Journal of Ecotoxicology, 2022, 17(5): 175-189 (in Chinese)
|
Li Q L, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications [J]. Water Research, 2008, 42(18): 4591-4602
|
Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13): 4944-4949
|
Qiu Z G, Shen Z Q, Qian D, et al. Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid [J]. Nanotoxicology, 2015, 9(7): 895-904
|
Ding C S, Jin M, Ma J, et al. Nano-Al2O3 can mediate transduction-like transformation of antibiotic resistance genes in water [J]. Journal of Hazardous Materials, 2021, 405: 124224
|
Wang X L, Yang F X, Zhao J, et al. Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes [J]. NanoImpact, 2018, 10: 61-67
|
Parra B, Tortella G R, Cuozzo S, et al. Negative effect of copper nanoparticles on the conjugation frequency of conjugative catabolic plasmids [J]. Ecotoxicology and Environmental Safety, 2019, 169: 662-668
|
Zhang S, Wang Y, Song H L, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera [J]. Environment International, 2019, 129: 478-487
|
Lu J, Wang Y, Jin M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes [J]. Water Research, 2020, 169: 115229
|
Guo M T, Tian X B. Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation [J]. Journal of Hazardous Materials, 2019, 380: 120877
|
Yu K Q, Chen F R, Yue L, et al. CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer [J]. Environmental Science & Technology, 2020, 54(16): 10012-10021
|
Liu X M, Tang J C, Song B R, et al. Exposure to Al2O3 nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces [J]. Nanotoxicology, 2019, 13(10): 1422-1436
|
Liu Y, Gao J F, Wang Y W, et al. Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition [J]. Journal of Hazardous Materials, 2022, 432: 128722
|
Liu Y, Gao J F, Wang Y W, et al. The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate [J]. Journal of Hazardous Materials, 2022, 423(Pt A): 126866
|
Pu Q, Fan X T, Li H, et al. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community [J]. Environmental Pollution, 2021, 268(Pt B): 115903
|
Pu Q, Fan X T, Sun A Q, et al. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes [J]. Environment International, 2021, 152: 106453
|
Wang H G, Gong S J, Li X H, et al. SDS coated Fe3O4@MoS2 with NIR-enhanced photothermal-photodynamic therapy and antibiotic resistance gene dissemination inhibition functions [J]. Colloids and Surfaces B, Biointerfaces, 2022, 214: 112457
|
Wang H G, Qi H C, Gong S J, et al. Fe3O4 composited with MoS2 blocks horizontal gene transfer [J]. Colloids and Surfaces B, Biointerfaces, 2020, 185: 110569
|
Wang H G, Qi H C, Zhu M, et al. MoS2 decorated nanocomposite: Fe2O3@MoS2 inhibits the conjugative transfer of antibiotic resistance genes [J]. Ecotoxicology and Environmental Safety, 2019, 186: 109781
|
Li G Y, Chen X F, Yin H L, et al. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes [J]. Environment International, 2020, 136: 105497
|
Zhang Y, Gu A Z, Cen T Y, et al. Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes [J]. Environment International, 2018, 114: 280-287
|
周宏瑞, 杨雨桐, 杨晓波, 等. 纳米二硫化钼促进粪肠球菌中信息素诱导质粒介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 160-169
Zhou H R, Yang Y T, Yang X B, et al. Molybdenum disulfide promotes pheromone-induced plasmid mediated conjugation transfer of drug resistance genes in Enterococcus faecalis [J]. Asian Journal of Ecotoxicology, 2022, 17(1): 160-169 (in Chinese)
|
Shi J H, Wu D, Su Y L, et al. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate [J]. Environmental Science: Nano, 2020, 7(11): 3536-3546
|
Loo K Y, Letchumanan V, Law J W F, et al. Incidence of antibiotic resistance in Vibrio spp [J]. Reviews in Aquaculture, 2020, 12(4): 2590-2608
|
Zha Y Y, Li Z W, Zhong Z, et al. Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics [J]. Journal of Hazardous Materials, 2022, 431: 128561
|
Yuan Q B, Sun R N, Yu P F, et al. UV-aging of microplastics increases proximal ARG donor-recipient adsorption and leaching of chemicals that synergistically enhance antibiotic resistance propagation [J]. Journal of Hazardous Materials, 2022, 427: 127895
|
He K, Xue B, Yang X B, et al. Low-concentration of trichloromethane and dichloroacetonitrile promote the plasmid-mediated horizontal transfer of antibiotic resistance genes [J]. Journal of Hazardous Materials, 2022, 425: 128030
|
Mantilla-Calderon D, Plewa M J, Michoud G, et al. Water disinfection byproducts increase natural transformation rates of environmental DNA in Acinetobacter baylyi ADP1 [J]. Environmental Science & Technology, 2019, 53(11): 6520-6528
|
Li H, Song R Y, Wang Y Y, et al. Environmental free radicals efficiently inhibit the conjugative transfer of antibiotic resistance by altering cellular metabolism and plasmid transfer [J]. Water Research, 2021, 209: 117946
|
Kashket E R. The proton motive force in bacteria: A critical assessment of methods [J]. Annual Review of Microbiology, 1985, 39: 219-242
|
Buberg M L, Witsø I L, L’Abée-Lund T M, et al. Zinc and copper reduce conjugative transfer of resistance plasmids from extended-spectrum beta-lactamase-producing Escherichia coli [J]. Microbial Drug Resistance, 2020, 26(7): 842-849
|
Payasi A. Inhibition of DNA relaxases by Elores to control spreading of resistant gene through conjugation [J]. International Journal of Biochemistry, 2013, 108: 202-206
|
Costa O Y A, Raaijmakers J M, Kuramae E E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation [J]. Frontiers in Microbiology, 2018, 9: 1636
|
Fulaz S, Vitale S, Quinn L, et al. Nanoparticle-biofilm interactions: The role of the EPS matrix [J]. Trends in Microbiology, 2019, 27(11): 915-926
|