Potocnik J. Commission Recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU)[R]. EurepeanUnion, 2011, 275:38-40
Luis Guillermo G B, Ismael Manuel U O, Estefany Ingrid M R, et al. Difficulties in establishing regulations for engineered nanomaterials and considerations for policy makers:Avoiding an unbalance between benefits and risks[J]. Journal of Applied Toxicology, 2015, 35(10):1073-1085
Colvin V L. The potential environmental impact of engineered nano-materials[J]. Nature Biotechnology, 2003, 21(10):1166-1170
朱小山, 朱琳. 人工纳米材料生物效应研究进展[J]. 安全与环境学报, 2005, 5(4):86-90 Zhu X S, Zhu L. Review on biological effects of manufactured nano-materials[J]. Journal of Safety and Environment, 2005, 5(4):86-90(in Chinese)
Dong Y, Feng S S. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy[J]. Biomaterials, 2007, 28(28):4154-4160
Nel A, Xia T, M ä dler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627
陆荔, 马明, 张宇, 等. 纳米材料生物安全性研究进展[J]. 东南大学学报:自然科学版, 2004, 34(5):711-714 Lu L, Ma M, Zhang Y, et al. Development of study on the bio-safety of nanomaterials[J]. Journal of Southeast University:Natural Science Edition, 2004, 34(5):711-714(in Chinese)
Thit A, Banta G T, Selck H. Bioaccumulation, subcellular distribution and toxicity of sediment-associated copper in the ragworm Nereis diversicolor:The relative importance of aqueous copper, copper oxide nanoparticles and microparticles[J]. Environmental Pollution, 2015, 202:50-57
Zhao J, Wang Z, White J C, et al. Graphene in the aquatic environment:Adsorption, dispersion, toxicity and transformation[J]. Environmental Science & Technology, 2014, 48(17):9995-10009
Klaine S J, Alvarez P J J, Batley G E, et al. Nanomaterials in the environment:Behavior, fate, bioavailability, and effects[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1825-1851
Pakarinen K, Petersen E J, Leppanen M T, et al. Adverse effects of fullerenes (nC60) spiked to sediments on Lumbriculus variegatus (Oligochaeta)[J]. Environmental Pollution, 2011, 159(12):3750-3756
Cabral S P. Effects of fullerenes on a freshwater benthic community:Toxicity and implications for ecological functions and services[D]. Rochester:Rochester Institute of Technology, 2018:1-57
Wang J, Wages M, Yu S, et al. Bioaccumulation of fullerene (C60) and corresponding catalase elevation in Lumbriculus variegatus[J]. Environmental Toxicology and Chemistry, 2014, 33(5):1135-1141
Waissi-Leinonen G C, Nybom I, Pakarinen K, et al. Fullerenes (nC60) affect the growth and development of the sediment-dwelling invertebrate Chironomus riparius larvae[J]. Environmental Pollution, 2015, 206:17-23
Waissi G C, Vaananen K, Nybom I, et al. The chronic effects of fullerene C60-associated sediments in the midge Chironomus riparius-Responses in the first and the second generation[J]. Environmental Pollution, 2017, 229:423-430
Petersen E J, Huang Q G, Weber W J. Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus[J]. Environmental Health Perspectives, 2018, 116(4):496-500
Galloway T, Lewis C, Dolciotti I, et al. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete[J]. Environmental Pollution, 2010, 158(5):1748-1755
Velzeboer I, Peeters E T, Koelmans A A. Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities[J]. Environmental Science & Technology, 2013, 47(13):7475-7482
Marta W, Witold J, Tomasz W, et al. Toxicity of silver nanoparticles, multiwalled carbon nanotubes and dendrimers assessed with multicellular organism C. elegans[J]. Toxicology Mechanisms and Methods, 2018, 28(6):432-439
Zhang P H, Selck H, Tangaa S R, et al. Bioaccumulation and effects of sediment-associated gold- and graphene oxide nanoparticles on Tubifex tubifex[J]. Journal of Environment and Science, 2017, 51:138-145
Castro V L, Clemente Z, Jonsson C, et al. Nanoecotoxicity assessment of graphene oxide and its relationship with humic acid[J]. Environmental Toxicology and Chemistry, 2018, 37(7):1998-2012
Buffet P E, Zalouk-Vergnoux A, Châtel A, et al. A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species:The ragworm Hediste diversicolor and the bivalve mollusk Scrobicularia plana[J]. Science of the Total Environment, 2014, 470-471:1151-1159
Cong Y, Banta G T, Selck H, et al. Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor[J]. Aquatic Toxicology, 2014, 156:106-115
Wang H H, Ho K T, Scheckel K G, et al. Toxicity, bioaccumulation and biotransformation of bilver nanoparticles in marine organisms[J]. Environmental Science & Technology, 2014, 48(23):13711-13717
Carrazco-Quevedo A, Römer I, Salamanca M J, et al. Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster)[J]. Ecotoxicology and Environmental Safety, 2019, 179:127-134
Tangaa S R, Selck H, Winther-Nielsen M, et al. A biodynamic understanding of dietborne and waterborne Ag uptake from Ag NPs in the sediment-dwelling oligochaete, Tubifex tubifex[J]. NanoImpact, 2018, 11:33-41
Kleiven M, Rossbach L M, Gallego-Urrea J A, et al. Characterizing the behavior, uptake, and toxicity of NM300K silver nanoparticles in Caenorhabditis elegans[J]. Environmental Toxicology and Chemistry, 2018, 37(7):1799-1810
An H J, Sarkheil M, Park H S, et al. Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina[J]. Comparative Biochemistry and Physiology, Part C, 2019, 218:62-69
Luo X, Xu S M, Yang Y N, et al. Insights into the ecotoxicity of silver nanoparticles transferred from Escherichia coli to Caenorhabditis elegans[J]. Scientific Reports, 2016, 6:36465
Lüderwald S, Schell T, Newton K, et al. Exposure pathway dependent effects of titanium dioxide and silver nanoparticles on the benthic amphipod Gammarus fossarum[J]. Aquatic Toxicity, 2019, 212:47-53
Bao S, Huang J L, Liu X, et al. Tissue distribution of Ag and oxidative stress responses in the fresh water snail Bellamya aeruginosa exposed to sediment-associated Ag nanoparticles[J]. Science of the Total Environment, 2018, 644:736-746
Echavarri-Bravo V, Paterson L, Aspray T J, et al. Shifts in the metabolic function of a benthic estuarine microbial community following a single pulse expose to silver nanoparticles[J]. Environmental Pollution, 2015, 201:91-99
Pamela J W, Nuraan K, Alaric P. The effect of biogenic and chemically manufactured silver nanoparticles on the benthic bacterial communities in river sediments[J]. Science of the Total Environment, 2018, 644:1380-1390
Jiang H S, Yin L, Ren N N, et al. The effect of chronic silver nanoparticles on aquatic system in microcosms[J]. Environmental Pollution, 2017, 223:395-402
Liu W W, Zeng Z T, Chen A, et al. Toxicity effects of silver nanoparticles on the freshwater bivalve Corbicula fluminea[J]. Journal of Environmental Chemical Engineering, 2018, 6:4236-4244
Park S Y, Chung J, Colman B P, et al. Ecotoxicity of bare and coated silver nanoparticles in the aquatic midge, Chironomus riparius[J]. Environmental Toxicology and Chemistry, 2015, 34(9):2023-2032
Nair P M, Park S Y, Choi J. Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius[J]. Chemosphere, 2013, 92(5):592-599
Ahn J M, Eom H J, Yang X Y, et al. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans[J]. Chemosphere, 2014, 108:343-352
Ale A, Liberatori G, Luisa M, et al. Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis[J]. Aquatic Toxicology, 2019, 211:46-56
Pan J F, Buffet P E, Poirier L, et al. Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate:The Tellinid clam Scrobicularia plana[J]. Environmental Pollution, 2012, 168:37-43
Hudson M L, Costello D M, Daley J M, et al. Species-specific (Hyalella azteca and Lymnea stagnalis) dietary accumulation of gold nano-particles associated with periphyton[J]. Bulletin of Environmental Contamination and Toxicity, 2019, 103(2):255-260
Kay T H, Lisa P, Anthony A, et al. Effects of micronized and nano-copper azole on marine benthic communities[J]. Environmental Toxicology and Chemistry, 2018, 37(2):362-375
Thit A, Dybowska A, Kobler C, et al. Influence of copper oxide nanoparticle shape on bioaccumulation, cellular internalization and effects in the estuarine sediment-dwelling polychaete, Nereis diversicolor[J]. Marine Environmental Research, 2015, 111:89-98
Pang C F, Selck H, Banta G T, et al. Bioaccumulation, toxicokinetics, and effects of copper from sediment spiked with aqueous Cu, nano-CuO, or micro-CuO in the deposit-feeding snail, Potamopyrgus antipodarum[J]. Environmental Toxicology and Chemistry, 2013, 32(7):1561-1573
Pang C F, Selck H, Misra S K, et al. Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum:A comparison of Cu added in aqueous form or as nano- and micro-CuO particles[J]. Aquatic Toxicology, 2012, 106-107:114-122
Ma T W, Gong S J, Tian B. Effects of sediment-associated CuO nanoparticles on Cu bioaccumulation and oxidative stress responses in freshwater snail Bellamya aeruginosa[J]. Science of the Total Environment, 2017, 580:797-804
王萌, 马陶武, 龙奕, 等. 腐殖酸作用下沉积物中纳米氧化铜对铜锈环棱螺生态毒性的影响[J]. 生态毒理学报, 2014, 9(4):803-808 Wang M, Ma T W, Long Y, et al. Impacts of humic acid on ecotoxicity of CuO nanoparticle in Bellamya aeruginosa under the sediment scenario[J]. Asian Journal of Ecotoxicology, 2014, 9(4):803-808(in Chinese)
Lammel T, Thit A, Mouneyrac C, et al. Trophic transfer of CuO NPs and dissolved Cu from sediment to worms to fish-a proof-of-concept study[J]. Environmental Science Nano, 2019, 6:1140-1155
Marisa I, Matozzo V, Martucci A, et al. Bioaccumulation and effects of titanium dioxide nanoparticles and bulk in the clam Ruditapes philippinarum[J]. Marine Environmental Research, 2018, 136:179-189
Auguste M, Lasa A, Pallavicini A, et al. Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph[J]. Science of the Total Environment, 2019, 670:129-137
Guan X F, Tang Y, Zha S J, et al. Exogenous Ca2+ mitigates the toxic effects of TiO2 nanoparticles on phagocytosis, cell viability, and apoptosis in haemocytes of a marine bivalve mollusk, Tegillarca granosa[J]. Environmental Pollution, 2019, 252:1764-1771
Saidani W, Sellami B, Khazri A, et al. Metal accumulation, biochemical and behavioral responses on the Mediterranean clams Ruditapes decussatus exposed to two photocatalyst nanocomposites (TiO2 NPs and AuTiO2NPs)[J]. Aquatic Toxicology, 2019, 208:71-79
Nunes S M, Josende M E, Ruas C P, et al. Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta[J]. Toxicology, 2017, 376:51-58
Camilla D T, Teresa B, Giacomo G, et al. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis[J]. Journal of Hazardous Materials, 2015, 297:92-100
Matouke M M, Mustapha M. Bioaccumulation and physiological effects of Copepods sp. (Eucyclop sp.) fed Chlorella ellipsoides exposed to titanium dioxide (TiO2) nanoparticles and lead (Pb2+)[J]. Aquatic Toxicology, 2018, 198:30-39
Wang J, Dai H, Nie Y, et al. TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process[J]. Ecotoxicology and Environmental Safety, 2018, 162:160-169
Huang C W, Li S W, Liao V H C. Long-term sediment exposure to ZnO nanoparticles induces oxidative stress in Caenorhabditis elegans[J]. Environmental Science Nano, 2019, 6:2602-2614
Poynton H C, Chen C, Alexander S L, et al. Enhanced toxicity of environmentally transformed ZnO nanoparticles relative to Zn ions in the epibenthic amphipod Hyalella azteca[J]. Environmental Science Nano, 2019, 6:325-340
Izabela J, Patryk O, Ewa S. The bioavailability and toxicity of ZnO and Ni nanoparticles and their bulk counterparts in different sediments[J]. Journal of Soils & Sediments, 2016, 16(6):1798-1808
Cross R K, Tyler C R, Galloway T S. The fate of cerium oxide nanoparticles in sediments and their routes of uptake in a freshwater worm[J]. Nanotoxicology, 2019, 13(7):894-908
Niemuth N J, Curtis B J, Hang M N, et al. Next-generation complex metal oxide nanomaterials negatively impact growth and development in the benthic invertebrate Chironomus riparius upon settling[J]. Environmental Science & Technology, 2019, 53(7):3860-3870
Li X, Liu W, Sun L, et al. Effects of physicochemical properties of nanomaterials on their toxicity[J]. Journal of Biomedical Materials Research. Part A, 2015, 103(7):2499-2507
Hull M S, Chaurand P, Rose J, et al. Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles[J]. Environmental Science & Technology, 2011, 45(15):6592-6599
Ramskov T, Selck H, Banta G, et al. Bioaccumulation and effects of different-shaped copper oxide nanoparticles in the deposit-feeding snail Potamopyrgus antipodarum[J]. Environmental Toxicology and Chemistry, 2014, 33(9):1976-1987
Buffet P E, Claude A T, Agnieszka D, et al. Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor[J]. Ecotoxicology and Environmental Safety, 2012, 84:191-198
Fabrega J, Tantra R, Asmer A, et al. Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator[J]. Environmental Science & Technology, 2012, 46(2):1128-1135
Fairbairn E A, Keller A A, Mädler L, et al. Metal oxide nanomaterials in seawater:Linking physicochemical characteristics with biological response in sea urchin development[J]. Journal of Hazardous Materials, 2011, 192(3):1565-1571
Miller R J, Lenihan H S, Muller E B, et al. Impacts of metal oxide nanoparticles on marine phytoplankton[J]. Environmental Science & Technology, 2010, 44(19):7329-7334
Khan F R, Misra S K, Bury N R, et al. Inhibition of potential uptake pathways for silver nanoparticles in the estuarine snail Peringia ulvae[J]. Nanotoxicology Information Healthcare, 2015, 9(4):493-501
Dai L, Syberg K, Banta G T, et al. Effects, uptake, and depuration kinetics of silver oxide and copper oxide nanoparticles in a marine deposit feeder, Macoma balthica[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7):760-767
Buffet P E, Richard M, Caupos F, et al. A mesocosm study of fate and effects of CuO nanoparticles on endobenthic species (Scrobicularia plana, Hediste diversicolor)[J]. Environmental Science & Technology, 2013, 47:1620-1628
Buffet P E, Pan J F, Poirier L, et al. Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food[J]. Ecotoxicology and Environmental Safety, 2013, 89:117-124
Ramskov T, Forbes V E, Gilliland D, et al. Accumulation and effects of sediment-associated silver nanoparticles to sediment-dwelling invertebrates[J]. Aquatic Toxicology, 2015, 166:96-105
Bundschuh M, Seitz F, Rosenfeldt R R, et al. Effects of nanoparticles in fresh waters:Risks, mechanisms and interactions[J]. Freshwater Biology, 2016, 61:2185-2196
Li S, Wallis L K, Ma H, et al. Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod:Are benthic systems at risk[J]. The Science of the Total Environment, 2014, 466-467:800-808
Ma H, Kabengi N J, Bertsch P M, et al. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans:The importance of illumination mode and primary particle size[J]. Environmental Pollution, 2011, 159(6):1473-1480
Lowery G V, Gregory K B, Apte S C, et al. Transformations of nanomaterials in the environment[J]. Environmental Science & Technology, 2012, 46:6893-6899
Hyung H, Kim J H. Natural organic matter adsorption to multi-walled carbon nanotubes:Effect of NOM characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42(12):4416-4421
Delay M, Dolt T, Woellhaf A, et al. Interactions and stability of silver nanoparticles in the aqueous phase:Influence of natural organic matter (NOM) and ionic strength[J]. Journal of Chromatography A, 2011, 1218(27):4206-4212
Lynch I, Dawson K A. Protein-nanoparticle interactions[J]. Nano Today, 2008, 3:40-47
Wormington A M, Coral J, Alloy M M, et al. Effect of natural organic matter on the photo-induced toxicity of titanium dioxide nanoparticles[J]. Environmental Toxicology and Chemistry, 2017, 36(6):1661-1666
Rajala J E, Vehniainen E R, Vaisanen A, et al. Toxicity of silver nanoparticles to Lumbriculus variegatus is a function of dissolved silver and promoted by low sediment pH[J]. Environmental Toxicology and Chemistry, 2018, 37(7):1889-1897