Faria M, Lopez M A, Fernandez-Sanjuan M, et al. Comparative toxicity of single and combined mixtures of selected pollutants among larval stages of the native freshwater mussels (Unio elongatulus) and the invasive zebra mussel (Dreissena polymorpha)[J]. Science of the Total Environment, 2010, 408(12):2452-2458
Boxall A B, Fogg L A, Blackwell P A, et al. Veterinary medicines in the environment[J]. Reviews of Environmental Contamination and Toxicology, 2004, 180:1-91
魏维芮. 浅谈我国抗生素的滥用问题及对策[J]. 化工管理, 2018(3):92, 94
Ben W, Qiang Z, Adams C, et al. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2008, 1202(2):173-180
徐永刚, 宇万太, 马强, 等. 环境中抗生素及其生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10(3):11-27 Xu Y G, Yu W T, Ma Q, et al. The antibiotic in environment and its ecotoxicity:A review[J]. Asian Journal of Ecotoxicology, 2015, 10(3):11-27(in Chinese)
雷慧宁. 规模化猪场废水处理工艺中抗生素和重金属残留及其生态风险[D]. 上海:华东师范大学, 2016:26 Lei H N. Antibiotic and heavy metal residues and ecological risks in large-scale pig farm wastewater treatment process[D]. Shanghai:East China Normal University, 2016:26(in Chinese)
Yu X, Wu Y, Deng M, et al. Tetracycline antibiotics as PI3K inhibitors in the Nrf2-mediated regulation of antioxidative stress in zebrafish larvae[J]. Chemosphere, 2019, 226:696-703
Meyer M T, Bumgarner J E, Varns J L, et al. Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry[J]. Science of the Total Environment, 2000, 248(2-3):181-187
Keerthisinghe T P, Wang F, Wang M, et al. Long-term exposure to TET increases body weight of juvenile zebrafish as indicated in host metabolism and gut microbiome[J]. Environment Internationnal, 2020, 139:105705
Qiu W, Sun J, Fang M, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China:Association with antibiotic resistance genes and microbial community[J]. Science of the Total Environment, 2019, 653:334-341
Yuan J, Ni M, Liu M, et al. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China[J]. Marine Pollution Bulletin, 2019, 138:376-384
Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3435-3440
Franco G C, Kajiya M, Nakanishi T, et al. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo[J]. Experimental Cell Research, 2011, 317(10):1454-1464
Kim Y, Kim J, Lee H, et al. Tetracycline analogs inhibit osteoclast differentiation by suppressing MMP-9-mediated histone H3 cleavage[J]. International Journal of Molecular Sciences, 2019, 20(16):4038
Dorman G, Cseh S, Hajdu I, et al. Matrix metalloproteinase inhibitors:A critical appraisal of design principles and proposed therapeutic utility[J]. Drugs, 2010, 70(8):949-964
Vandooren J, Knoops S, Aldinucci Buzzo J L, et al. Differential inhibition of activity, activation and gene expression of MMP-9 in THP-1 cells by azithromycin and minocycline versus bortezomib:A comparative study[J]. PLoS One, 2017, 12(4):e0174853
Dong W, Hinton D E, Kullman S W. TCDD disrupts hypural skeletogenesis during medaka embryonic development[J]. Toxicological Sciences, 2012, 125(1):91-104
Zhang G, Eames B F, Cohn M J. Chapter 2. Evolution of vertebrate cartilage development[J]. Current Topics in Developmental Biology, 2009, 86:15-42
Karsenty G. Transcriptional control of skeletogenesis[J]. Annual Review of Genomics and Human Genetics, 2008, 9:183-196
Flores M V, Lam E Y, Crosier P, et al. A hierarchy of Runx transcription factors modulate the onset of chondrogenesis in craniofacial endochondral bones in zebrafish[J]. Developmental Dynamics, 2006, 235(11):3166-3176
Enomoto H, Furuichi T, Zanma A, et al. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro[J]. Journal of Cell Science, 2004, 117:417-425
Bell D M, Leung K K, Wheatley S C, et al. SOX9 directly regulates the type-Ⅱ collagen gene[J]. Nature Genetics, 1997, 16(2):174-178
Lefebvre V, Huang W, Harley V R, et al. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(Ⅱ) collagen gene[J]. Molecular and Cellular Biology, 1997, 17(4):2336-2346
Sekiya I, Tsuji K, Koopman P, et al. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6[J]. The Journal of Biological Chemistry, 2000, 275(15):10738-10744
Bridgewater L C, Lefebvre V, de Crombrugghe B. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer[J]. The Journal of Biological Chemistry, 1998, 273(24):14998-15006
Goldring M B, Peng H, Ijiri K, et al. ESE1 inhibits COL2A1 promoter activity via Sox9 and CBP[J]. Matrix Biology, 2006, 25(S1):S90
何加发. 诺氟沙星对稀有鮈鲫雌性亲本胚胎及子代骨骼发育的影响[D]. 杨凌:西北农林科技大学, 2019:1 He J F. The influence of embryo and bone development treated with norfloxacin in rare minnow Gobiocypris rarus offspring[D]. Yangling:Northwest A&F University, 2019:1(in Chinese)
Crump J G, Swartz M E, Eberhart J K, et al. Moz-dependent Hox expression controls segment-specific fate maps of skeletal precursors in the face[J]. Development, 2006, 133(14):2661-2669
Dutton J R, Antonellis A, Carney T J, et al. An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10[J]. BMC Developmental Biology, 2008, 8:105
Halpern M E, Hatta K, Amacher S L, et al. Genetic interactions in zebrafish midline development[J]. Developmental Biology, 1997, 187(2):154-170
Renn J, Winkler C, Schartl M, et al. Zebrafish and medaka as models for bone research including implications regarding space-related issues[J]. Protoplasma, 2006, 229(2-4):209-214
Brannen K C, Panzica-Kelly J M, Danberry T L, et al. Development of a zebrafish embryo teratogenicity assay and quantitative prediction model[J]. Birth Defects Research Part B, Developmental and Reproductive Toxicology, 2010, 89(1):66-77
Dong W, Wang F, Fang M, et al. Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China[J]. Ecotoxicology and Environmental Safety, 2019, 173:339-346
Osman A G, Wuertz S, Mekkawy I A, et al. Lead induced malformations in embryos of the African catfish Clarias gariepinus (Burchell, 1822)[J]. Environmental Toxicology, 2007, 22(4):375-389
梁伟放, 赵建国, 柳贤德. 四环素对斑马鱼胚胎发育及CAT和SOD活性的影响[J]. 热带农业工程, 2017, 41(1):17-20 Liang W F, Zhao J G, Liu X D, et al. Effect of tetracycline on zebrafish embryonic development and CAT and SOD activities[J]. Tropical Agricultural Engineering, 2017, 41(1):17-20(in Chinese)
Jonsson M E, Kubota A, Timme-Laragy A R, et al. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish[J]. Toxicology and Applied Pharmacology, 2012, 265(2):166-174
Yabe K, Satoh H, Ishii Y, et al. Early pathophysiologic feature of arthropathy in juvenile dogs induced by ofloxacin, a quinolone antimicrobial agent[J]. Veterinary Pathology, 2004, 41(6):673-681
Goto K, Yabe K, Suzuki T, et al. Chondrotoxicity and toxicokinetics of novel quinolone antibacterial agents DC-159a and DX-619 in juvenile rats[J]. Toxicology, 2010, 276(2):122-127
Bi W, Deng J M, Zhang Z, et al. Sox9 is required for cartilage formation[J]. Nature Genetics, 1999, 22(1):85-89
Akiyama H, Chaboissier M C, Martin J F, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6[J]. Genes & Development, 2002, 16(21):2813-2828
Cheah K S, Au P K, Lau E T, et al. The mouse Col2a-1 gene is highly conserved and is linked to Int-1 on chromosome 15[J]. Mammalian Genome, 1991, 1(3):171-183
Wood A, Ashhurst D E, Corbett A, et al. The transient expression of type Ⅱ collagen at tissue interfaces during mammalian craniofacial development[J]. Development, 1991, 111(4):955-968
Li S W, Khillan J, Prockop D J. The complete cDNA coding sequence for the mouse pro alpha 1(Ⅰ) chain of type Ⅰ procollagen[J]. Matrix Biology, 1995, 14(7):593-595
Cheah K S, Lau E T, Au P K, et al. Expression of the mouse alpha 1(Ⅱ) collagen gene is not restricted to cartilage during development[J]. Development, 1991, 111(4):945-953