何孟常, 万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展, 2004, 16(1):131-135 He M C, Wan H Y. Distribution, speciation, toxicity and bioavailability of antimony in the environment[J]. Progress in Chemistry, 2004, 16(1):131-135(in Chinese)
U.S. Geological Survey (USGS). 2016 Minerals yearbook antimony (advance release)[R]//U.S. Geological Survey. Mineral Commodity Summaries.:USGS, 2019
He M C, Wang N N, Long X J, et al. Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75:14-39
Zhou J W, Nyirenda M T, Xie L N, et al. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan mine, China[J]. Applied Geochemistry, 2017, 77:52-61
Qi C C, Liu G J, Kang Y, et al. Assessment and distribution of antimony in soils around three coal mines, Anhui, China[J]. Journal of the Air & Waste Management Association, 2011, 61(8):850-857
林祥龙, 孙在金, 马瑾, 等. 不同形态锑对土壤白符跳(Folsomia candida)的毒性差异[J]. 农业环境科学学报, 2017, 36(4):657-664 Lin X L, Sun Z J, Ma J, et al. Toxicity differences of different forms of antimony to soil-dwelling springtail(Folsomia candida)[J]. Journal of Agro-Environment Science, 2017, 36(4):657-664(in Chinese)
黄丽春, 石重光, 陈家玉. 三氧化二锑小鼠急性毒性实验研究[J]. 职业卫生与病伤, 1996, 11(3):170-171 Huang L C, Shi C G, Chen J Y. Experimental study on acute toxicity of antimony trioxide in mice[J].Occupational Health and Damage, 1996, 11(3):170-171(in Chinese)
何孟常, 谢南岳. 土壤中锑对水稻的污染及改良措施[J]. 湖南农学院学报, 1994(1):47-51 He M C, Xie N Y. Study of the rice pollution and amendment of antimony in soils[J]. Journal of Hunan Agricultural University, 1994 (1):47-51(in Chinese)
Feng R W, Wei C Y, Tu S X, et al. Antimony accumulation and antioxidative responses in four fern plants[J]. Plant and Soil, 2008, 317(1-2):93-101
Shtangeeva I, Bali R, Harris A. Bioavailability and toxicity of antimony[J]. Journal of Geochemical Exploration, 2011, 110(1):40-45
戈兆凤, 韦朝阳. 锑环境健康效应的研究进展[J]. 环境与健康杂志, 2011, 28(7):649-653 Ge Z F, Wei C Y. Environmental health effect of antimony:A review of recent researches[J]. Journal of Environment and Health, 2011, 28(7):649-653(in Chinese)
Mitsunobu S, Harada T, Takahashi Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions[J]. Environmental Science & Technology, 2006, 40(23):7270-7276
Okkenhaug G, Zhu Y G, Luo L, et al. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area[J]. Environmental Pollution, 2011, 159(10):2427-2434
Cai Y B, Mi Y T, Zhang H. Kinetic modeling of antimony(Ⅲ) oxidation and sorption in soils[J]. Journal of Hazardous Materials, 2016, 316:102-109
Wilson S C, Lockwood P V, Ashley P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J]. Environmental Pollution, 2010, 158(5):1169-1181
Li B, Zhang X, Wang X D, et al. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture[J]. Ecotoxicology and Environmental Safety, 2009, 72(6):1760-1766
Song N N, Ma Y B. The toxicity of HCrO4- and CrO42- to barley root elongation in solution culture:pH effect and modelling[J]. Chemosphere, 2017, 171:537-543
Wang X D, Hua L, Ma Y B. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare):Influence of calcium, magnesium, sodium, potassium and pH[J]. Chemosphere, 2012, 89(1):89-95
Weng L P, Wolthoorn A, Lexmond T M, et al. Understanding the effects of soil characteristics on phytotoxicity and bioavailability of nickel using speciation models[J]. Environmental Science & Technology, 2004, 38(1):156-162
Crémazy A, Campbell P G, Fortin C. The biotic ligand model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above:Possible role of hydroxo-species[J]. Environmental Science & Technology, 2013, 47(5):2408-2415
Wang X D, Wu M Y, Ma J X, et al. Modeling of acute cadmium toxicity in solution to barley root elongation using biotic ligand model theory[J]. Journal of Environmental Sciences, 2016, 42:112-118
张璇, 华珞, 王学东, 等. 不同pH值条件下镍对大麦的急性毒性[J]. 中国环境科学, 2008, 28(7):640-645 Zhang X, Hua L, Wang X D, et al. Effect of pH on nickel acute toxicity to barley (Hordeum vulgare)[J]. China Environmental Science, 2008, 28(7):640-645(in Chinese)
Lock K, Criel P, De Schamphelaere K A, et al. Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare)[J]. Ecotoxicology and Environmental Safety, 2007, 68(2):299-304
International Organization for Standardization (ISO). Soil quality-Determination of the effects of pollutants on soil flora-Part 1:Method for the measurement of inhibition of root growth. ISO 11269-1, Geneva:ISO, 1993
Haanstra L, Doelman P, Oude Voshaar J H. The use of sigmoidal dose response curves in soil ecotoxicological research[J]. Plant and Soil, 1985, 84(2):293-297
Thakali S, Allen H E, di Toro D M, et al. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils[J]. Environmental Science & Technology, 2006, 40(22):7085-7093
Buschmann J, Sigg L. Antimony(Ⅲ) binding to humic substances:Influence of pH and type of humic acid[J]. Environmental Science & Technology, 2004, 38(17):4535-4541
Wang X D, Li B, Ma Y B, et al. Development of a biotic ligand model for acute zinc toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2010, 73(6):1272-1278
Jo H J, Son J, Cho K, et al. Combined effects of water quality parameters on mixture toxicity of copper and chromium toward Daphnia magna[J]. Chemosphere, 2010, 81(10):1301-1307