Chen N, Wang H, Huang Q, et al. Long-term effects of nanoparticles on nutrition and metabolism [J]. Small, 2014, 10(18): 3603-3611
Kerativitayanan P, Carrow J K, Gaharwar A K. Nanomaterials for engineering stem cell responses [J]. Advanced Healthcare Materials, 2015, 4(11): 1600-1627
Schaeublin N M, Braydich-Stolle L K, Schrand A M, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity [J]. Nanoscale, 2011, 3(2): 410-420
Wang W Q, Gaus K, Tilley R D, et al. The impact of nanoparticle shape on cellular internalisation and transport: What do the different analysis methods tell us? [J]. Materials Horizons, 2019, 6(8): 1538-1547
Faiola F, Yin N Y, Yao X L, et al. The rise of stem cell toxicology [J]. Environmental Science & Technology, 2015, 49(10): 5847-5848
Hu B W, Cheng Z W, Liang S X. Advantages and prospects of stem cells in nanotoxicology [J]. Chemosphere, 2022, 291(Pt 2): 132861
Alshatwi A A, Subbarayan P V, Ramesh E, et al. Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells [J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2013, 30(1): 1-10
Nogueira D R, Rolim C M, Farooqi A A. Nanoparticle induced oxidative stress in cancer cells: Adding new pieces to an incomplete jigsaw puzzle [J]. Asian Pacific Journal of Cancer Prevention, 2014, 15(12): 4739-4743
Shin T H, Seo C, Lee D Y, et al. Silica-coated magnetic nanoparticles induce glucose metabolic dysfunction in vitro via the generation of reactive oxygen species [J]. Archives of Toxicology, 2019, 93(5): 1201-1212
Zhao H, Chen L, Zhong G S, et al. Titanium dioxide nanoparticles induce mitochondrial dynamic imbalance and damage in HT22 cells [J]. Journal of Nanomaterials, 2019, 2019: 4607531
Paciorek P, Z·uberek M, Grzelak A. Products of lipid peroxidation as a factor in the toxic effect of silver nanoparticles [J]. Materials, 2020, 13(11): 2460
de Oliveira Mallia J, Galea R, Nag R, et al. Nanoparticle food applications and their toxicity: Current trends and needs in risk assessment strategies [J]. Journal of Food Protection, 2022, 85(2): 355-372
Jia J B, Li F F, Zhou H Y, et al. Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice [J]. Environmental Science & Technology, 2017, 51(16): 9334-9343
Peng H, Zhang X H, Wei Y, et al. Cytotoxicity of silver nanoparticles in human embryonic stem cell-derived fibroblasts and an L-929 cell line [J]. Journal of Nanomaterials, 2012, 2012: 160145
Yin N Y, Hu B W, Yang R J, et al. Assessment of the developmental neurotoxicity of silver nanoparticles and silver ions with mouse embryonic stem cells in vitro [J]. Journal of Interdisciplinary Nanomedicine, 2018, 3(3): 133-145
Huang Y, Guo L L, Cao C L, et al. Silver nanoparticles exposure induces developmental neurotoxicity in hiPSC-derived cerebral organoids [J]. The Science of the Total Environment, 2022, 845: 157047
Hu B W, Yin N Y, Yang R J, et al. Silver nanoparticles (AgNPs) and AgNO3 perturb the specification of human hepatocyte-like cells and cardiomyocytes [J]. The Science of the Total Environment, 2020, 725: 138433
Guo J F, Rahme K, He Y, et al. Gold nanoparticles enlighten the future of cancer theranostics [J]. International Journal of Nanomedicine, 2017, 12: 6131-6152
Kumar D, Mutreja I, Chitcholtan K, et al. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells [J]. Nanotechnology, 2017, 28(47): 475101
Söderstjerna E, Johansson F, Klefbohm B, et al. Gold- and silver nanoparticles affect the growth characteristics of human embryonic neural precursor cells [J]. PLoS One, 2013, 8(3): e58211
Nabi S U, Ali S I, Rather M A, et al. Organoids: A new approach in toxicity testing of nanotherapeutics [J]. Journal of Applied Toxicology, 2022, 42(1): 52-72
Lee J, Lilly G D, Doty R C, et al. In vitro toxicity testing of nanoparticles in 3D cell culture [J]. Small, 2009, 5(10): 1213-1221
Peng H S, Wang C, Xu X Y, et al. An intestinal Trojan horse for gene delivery [J]. Nanoscale, 2015, 7(10): 4354-4360
Senut M C, Zhang Y H, Liu F C, et al. Size-dependent toxicity of gold nanoparticles on human embryonic stem cells and their neural derivatives [J]. Small, 2016, 12(5): 631-646
Xia Z H, Li J Y, Zhang J M, et al. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids [J]. Journal of Bioresources and Bioproducts, 2020, 5(2): 79-95
Yi C X, Yu Z H, Ren Q, et al. Nanoscale ZnO-based photosensitizers for photodynamic therapy [J]. Photodiagnosis and Photodynamic Therapy, 2020, 30: 101694
Gharpure S, Ankamwar B. Synthesis and antimicrobial properties of zinc oxide nanoparticles [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 5977-5996
Ahamed M, Akhtar M J, Majeed Khan M A M, et al. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2) [J]. Colloids and Surfaces B, Biointerfaces, 2016, 148: 665-673
Chen Z Y, Yang Y C, Wang B J, et al. Comparing different surface modifications of zinc oxide nanoparticles in the developmental toxicity of zebrafish embryos and larvae [J]. Ecotoxicology and Environmental Safety, 2022, 243: 113967
Subramanian R, Sabeena G K, Ponnanikajamideen M, et al. Synthesis of green zinc oxide nanoparticles mediated by Syzygium cumini induced developmental deformation in embryo toxicity of (Danio rerio) zebrafish [J]. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 2022, 41(12): 3971-3980
Ickrath P, Wagner M, Scherzad A, et al. Time-dependent toxic and genotoxic effects of zinc oxide nanoparticles after long-term and repetitive exposure to human mesenchymal stem cells [J]. International Journal of Environmental Research and Public Health, 2017, 14(12): 1590
Orazizadeh M, Khodadadi A, Bayati V, et al. In vitro toxic effects of zinc oxide nanoparticles on rat adipose tissue-derived mesenchymal stem cells [J]. Cell Journal, 2015, 17(3): 412-421
Liu L L, Wang J K, Zhang J Q, et al. The cytotoxicity of zinc oxide nanoparticles to 3D brain organoids results from excessive intracellular zinc ions and defective autophagy [J]. Cell Biology and Toxicology, 2023, 39(1): 259-275
Li Y, Yan J, Ding W, et al. Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles [J]. Mutagenesis, 2017, 32(1): 33-46
Iavicoli I, Leso V, Fontana L, et al. Toxicological effects of titanium dioxide nanoparticles: A review of in vitro mammalian studies [J]. European Review for Medical and Pharmacological Sciences, 2011, 15(5): 481-508
Cichoz·-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases [J]. World Journal of Gastroenterology, 2014, 20(25): 8082-8091
Sarikhani M, Vaghefi Moghaddam S, Firouzamandi M, et al. Harnessing rat derived model cells to assess the toxicity of TiO2 nanoparticles [J]. Journal of Materials Science Materials in Medicine, 2022, 33(5): 41
Cao X Q, Han Y H, Gu M, et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations [J]. Small, 2020, 16(36): e2001858
Zhang L P, He Y L, Dong L L, et al. Perturbation of intestinal stem cell homeostasis and radiation enteritis recovery via dietary titanium dioxide nanoparticles [J]. Cell Proliferation, 2023, 56(8): e13427
Oh S, Brammer K S, Li Y S, et al. Stem cell fate dictated solely by altered nanotube dimension [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130-2135
Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate [J]. Nano Letters, 2007, 7(6): 1686-1691
Tong Z C, Liu Y C, Xia R Z, et al. F-actin regulates osteoblastic differentiation of mesenchymal stem cells on TiO2 nanotubes through MKL1 and YAP/TAZ [J]. Nanoscale Research Letters, 2020, 15(1): 183
Park J, Bauer S, Schlegel K A, et al. TiO2 nanotube surfaces: 15 nm—An optimal length scale of surface topography for cell adhesion and differentiation [J]. Small, 2009, 5(6): 666-671
Pan L, Lee Y M, Lim T K, et al. Quantitative proteomics study reveals changes in the molecular landscape of human embryonic stem cells with impaired stem cell differentiation upon exposure to titanium dioxide nanoparticles [J]. Small, 2018, 14(23): e1800190
Krug H F, Wick P. Nanotoxicology: An interdisciplinary challenge [J]. Angewandte Chemie, 2011, 50(6): 1260-1278
Mashayekhi S, Rasoulpoor S, Shabani S, et al. Curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for supporting long-term proliferation and stemness preservation of adipose-derived stem cells [J]. International Journal of Pharmaceutics, 2020, 587: 119656
Li X Y, Li Y, Lv S Q, et al. Long-term respiratory exposure to amorphous silica nanoparticles promoted systemic inflammation and progression of fibrosis in a susceptible mouse model [J]. Chemosphere, 2022, 300: 134633
Zhu Y, Zhang Y K, Li Y B, et al. Integrative proteomics and metabolomics approach to elucidate metabolic dysfunction induced by silica nanoparticles in hepatocytes [J]. Journal of Hazardous Materials, 2022, 434: 128820
Mahmoud A M, Desouky E M, Hozayen W G, et al. Mesoporous silica nanoparticles trigger liver and kidney injury and fibrosis via altering TLR4/NF-κB, JAK2/STAT3 and Nrf2/HO-1 signaling in rats [J]. Biomolecules, 2019, 9(10): 528
Yang X, Liu X J, Li Y Y, et al. The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells [J]. Materials Science & Engineering C, Materials for Biological Applications, 2017, 81: 341-348
Yamashita K, Yoshioka Y, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice [J]. Nature Nanotechnology, 2011, 6(5): 321-328
Vranic S, Shimada Y, Ichihara S, et al. Toxicological evaluation of SiO2 nanoparticles by zebrafish embryo toxicity test [J]. International Journal of Molecular Sciences, 2019, 20(4): 882
Periasamy V S, Athinarayanan J, Akbarsha M A, et al. Silica nanoparticles induced metabolic stress through EGR1, CCND, and E2F1 genes in human mesenchymal stem cells [J]. Applied Biochemistry and Biotechnology, 2015, 175(2): 1181-1192
Mousavi M, Hakimian S, Mustafa T A, et al. The interaction of silica nanoparticles with catalase and human mesenchymal stem cells: Biophysical, theoretical and cellular studies [J]. International Journal of Nanomedicine, 2019, 14: 5355-5368
Park S B, Jung W H, Kim K Y, et al. Toxicity assessment of SiO2 and TiO2 in normal colon cells, in vivo and in human colon organoids [J]. Molecules, 2020, 25(16): 3594
Anand A, Unnikrishnan B, Wei S C, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents: A minireview [J]. Nanoscale Horizons, 2019, 4(1): 117-137
Chen H Q, Zhao R F, Wang B, et al. Acute oral administration of single-walled carbon nanotubes increases intestinal permeability and inflammatory responses: Association with the changes in gut microbiota in mice [J]. Advanced Healthcare Materials, 2018, 7(13): e1701313
Song G D, Guo X S, Zong X L, et al. Toxicity of functionalized multi-walled carbon nanotubes on bone mesenchymal stem cell in rats [J]. Dental Materials Journal, 2019, 38(1): 127-135
Palmer B C, Phelan-Dickenson S J, DeLouise L A. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation [J]. Particle and Fibre Toxicology, 2019, 16(1): 3
Kim J E, Cho M H. Effects of multiwall carbon nanotubes on premature kidney aging: Biochemical and histological analysis [J]. Toxics, 2023, 11(4): 373
Pietroiusti A, Massimiani M, Fenoglio I, et al. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development [J]. ACS Nano, 2011, 5(6): 4624-4633
Ema M, Hougaard K S, Kishimoto A, et al. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review [J]. Nanotoxicology, 2016, 10(4): 391-412
Jiang Y, Gong H S, Jiang S H, et al. Multi-walled carbon nanotubes decrease neuronal NO synthase in 3D brain organoids [J]. The Science of the Total Environment, 2020, 748: 141384
Mia M B, Saxena R K. Toxicity of poly-dispersed single-walled carbon nanotubes on bone marrow derived hematopoietic stem and progenitor cells [J]. Current Research in Toxicology, 2021, 2: 82-92
Periasamy V S, Athinarayanan J, Alfawaz M A, et al. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes [J]. Chemosphere, 2016, 144: 275-284
Feng Z Q, Yan K, Shi C M, et al. Neurogenic differentiation of adipose derived stem cells on graphene-based mat [J]. Materials Science & Engineering C, Materials for Biological Applications, 2018, 90: 685-692
Yang L T, Chueng S D, Li Y, et al. A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy [J]. Nature Communications, 2018, 9(1): 3147
Shen Y L, Wu L, Qin D D, et al. Carbon black suppresses the osteogenesis of mesenchymal stem cells: The role of mitochondria [J]. Particle and Fibre Toxicology, 2018, 15(1): 16
Liu D D, Yi C Q, Zhang D W, et al. Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes [J]. ACS Nano, 2010, 4(4): 2185-2195
Yang D H, Li T, Xu M H, et al. Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons [J]. Nanomedicine, 2014, 9(16): 2445-2455
Krukiewicz K, Putzer D, Stuendl N, et al. Enhanced osteogenic differentiation of human primary mesenchymal stem and progenitor cultures on graphene oxide/poly(methyl methacrylate) composite scaffolds [J]. Materials, 2020, 13(13): 2991
Rostami F, Tamjid E, Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells [J]. Materials Science & Engineering C, Materials for Biological Applications, 2020, 115: 111102
Sohaebuddin S K, Thevenot P T, Baker D, et al. Nanomaterial cytotoxicity is composition, size, and cell type dependent [J]. Particle and Fibre Toxicology, 2010, 7: 22
Dong X M, Wu Z H, Li X P, et al. The size-dependent cytotoxicity of amorphous silica nanoparticles: A systematic review of in vitro studies [J]. International Journal of Nanomedicine, 2020, 15: 9089-9113
Sun H N, Jiang C J, Wu L, et al. Cytotoxicity-related bioeffects induced by nanoparticles: The role of surface chemistry [J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 414
Woz'niak A, Malankowska A, Nowaczyk G, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications [J]. Journal of Materials Science Materials in Medicine, 2017, 28(6): 92
Pacheco-Blandino I, Vanner R, Buzea C. Toxicity of Nanoparticles [M]//Pacheco-Torgal F, Jalali S, Fucic A. Toxicity of Building Materials. Woodhead Publishing. 2012: 427-475
Krpetić Z, Anguissola S, Garry D, et al. Nanomaterials: Impact on cells and cell organelles [J]. Advances in Experimental Medicine and Biology, 2014, 811: 135-156
Nierenberg D, Khaled A R, Flores O. Formation of a protein corona influences the biological identity of nanomaterials [J]. Reports of Practical Oncology and Radiotherapy, 2018, 23(4): 300-308
Wei Z C, Chen L M, Thompson D M, et al. Effect of particle size on in vitro cytotoxicity of titania and alumina nanoparticles [J]. Journal of Experimental Nanoscience, 2014, 9(6): 625-638
Jeon S, Clavadetscher J, Lee D K, et al. Surface charge-dependent cellular uptake of polystyrene nanoparticles [J]. Nanomaterials, 2018, 8(12): 1028
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles [J]. International Journal of Nanomedicine, 2012, 7: 5577-5591
Lorenz S, Hauser C P, Autenrieth B, et al. The softer and more hydrophobic the better: Influence of the side chain of polymethacrylate nanoparticles for cellular uptake [J]. Macromolecular Bioscience, 2010, 10(9): 1034-1042
Serpooshan V, Sheibani S, Pushparaj P, et al. Effect of cell sex on uptake of nanoparticles: The overlooked factor at the nanobiointerface [J]. ACS Nano, 2018, 12(3): 2253-2266
Zhang J, Chen Y J, Gao M, et al. Silver nanoparticles compromise female embryonic stem cell differentiation through disturbing X chromosome inactivation [J]. ACS Nano, 2019, 13(2): 2050-2061
Huang Y R, Wu I T, Chen C C, et al. In vitro comparisons of microscale and nanoscale calcium silicate particles [J]. Journal of Materials Chemistry B, 2020, 8(28): 6034-6047
Jawad H, Boccaccini A R, Ali N N, et al. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications [J]. Nanotoxicology, 2011, 5(3): 372-380
Encabo-Berzosa M D M, Sancho-Albero M, Crespo A, et al. The effect of PEGylated hollow gold nanoparticles on stem cell migration: Potential application in tissue regeneration [J]. Nanoscale, 2017, 9(28): 9848-9858
Borm P J, Robbins D, Haubold S, et al. The potential risks of nanomaterials: A review carried out for ECETOC [J]. Particle and Fibre Toxicology, 2006, 3: 11
杨仁君, 任悦, 沈素, 等. 人多能干细胞在环境污染物风险评估中的应用与展望[J]. 生态毒理学报, 2020, 15(3): 47-55 Yang R J, Ren Y, Shen S, et al. Application and prospect of human pluripotent stem cells in risk assessment of environmental pollutants [J]. Asian Journal of Ecotoxicology, 2020, 15(3): 47-55 (in Chinese)
Jia X L, Wang T, Zhu H. Advancing computational toxicology by interpretable machine learning [J]. Environmental Science & Technology, 2023, 57(46): 17690-17706
Kar S, Pathakoti K, Tchounwou P B, et al. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through in vitro and in silico studies [J]. Chemosphere, 2021, 264(Pt 1): 128428
Duval K, Grover H, Han L H, et al. Modeling physiological events in 2D vs. 3D cell culture [J]. Physiology, 2017, 32(4): 266-277
Lancaster M A, Knoblich J A. Organogenesis in a dish: Modeling development and disease using organoid technologies [J]. Science, 2014, 345(6194): 1247125
Prasad M, Kumar R, Buragohain L, et al. Organoid technology: A reliable developmental biology tool for organ-specific nanotoxicity evaluation [J]. Frontiers in Cell and Developmental Biology, 2021, 9: 696668
Mun S J, Ryu J S, Lee M O, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids [J]. Journal of Hepatology, 2019, 71(5): 970-985
Lancaster M A, Huch M. Disease modelling in human organoids [J]. Disease Models & Mechanisms, 2019, 12(7): dmm039347
Oh J H, Son M Y, Choi M S, et al. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles [J]. Toxicology and Applied Pharmacology, 2016, 299: 8-23
Rajanahalli P, Stucke C J, Hong Y L. The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation [J]. Toxicology Reports, 2015, 2: 758-764
Sengstock C, Diendorf J, Epple M, et al. Effect of silver nanoparticles on human mesenchymal stem cell differentiation [J]. Beilstein Journal of Nanotechnology, 2014, 5: 2058-2069
Hackenberg S, Scherzed A, Technau A, et al. Functional responses of human adipose tissue-derived mesenchymal stem cells to metal oxide nanoparticles in vitro [J]. Journal of Biomedical Nanotechnology, 2013, 9(1): 86-95
Keremidarska-Markova M, Hristova-Panusheva K, Andreeva T, et al. Cytotoxicity evaluation of ammonia-modified graphene oxide particles in lung cancer cells and embryonic stem cells [J]. Advances in Condensed Matter Physics, 2018, 2018: 9571828