Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, et al. Endocrine-disrupting chemicals:An Endocrine Society scientific statement[J]. Endocrine Reviews, 2009, 30(4):293-342
李文梅, 俞捷, 杨静, 等. 肥胖与环境内分泌干扰物暴露的关系及机制[J]. 重庆医学, 2017, 46(24):3425-3427
Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease[J]. Metabolism:Clinical and Experimental, 2016, 65(8):1026-1037
Bastos Sales L, Kamstra J H, Cenijn P H, et al. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation[J]. Toxicology in Vitro, 2013, 27(6):1634-1643
Grün F, Watanabe H, Zamanian Z, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates[J]. Molecular Endocrinology, 2006, 20(9):2141-2155
Chamorro-García R, Shoucri B M, Willner S, et al. Effects of perinatal exposure to dibutyltin chloride on fat and glucose metabolism in mice, and molecular mechanisms, in vitro[J]. Environmental Health Perspectives, 2018, 126(5):057006
Kanayama T, Kobayashi N, Mamiya S, et al. Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway[J]. Molecular Pharmacology, 2005, 67(3):766-774
Ariemma F, D'Esposito V, Liguoro D, et al. Low-dose bisphenol-A impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes[J]. PLoS One, 2016, 11(3):e0150762
Kamstra J H, Hruba E, Blumberg B, et al. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47[J]. Environmental Science & Technology, 2014, 48(7):4110-4119
Inadera H, Shimomura A. Environmental chemical tributyltin augments adipocyte differentiation[J]. Toxicology Letters, 2005, 159(3):226-234
Bertuloso B D, Podratz P L, Merlo E, et al. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas[J]. Toxicology Letters, 2015, 235(1):45-59
Yan Z H, Zhang H J, Maher C, et al. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR) γ methylation in offspring, grand-offspring mice[J]. PLoS One, 2014, 9(10):e110706
Zhang W, Shen X Y, Zhang W W, et al. The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level[J]. Toxicology Mechanisms and Methods, 2017, 27(4):245-252
Brulport A, Le Corre L, Chagnon M C. Chronic exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces an obesogenic effect in C57BL/6J mice fed a high fat diet[J]. Toxicology, 2017, 390:43-52
Martella A, Silvestri C, Maradonna F, et al. Bisphenol A induces fatty liver by an endocannabinoid-mediated positive feedback loop[J]. Endocrinology, 2016, 157(5):1751-1763
Wang C, Yue S Q, Hao Z L, et al. Pubertal exposure to the endocrine disruptor mono-2-ethylhexyl ester at body burden level caused cholesterol imbalance in mice[J]. Environmental Pollution, 2019, 244:657-666
Hao Z L, Zhang Z J, Lu D Z, et al. Organophosphorus flame retardants impair intracellular lipid metabolic function in human hepatocellular cells[J]. Chemical Research in Toxicology, 2019, 32(6):1250-1258
Yu J, Yang X S, Yang X F, et al. Nonylphenol aggravates non-alcoholic fatty liver disease in high sucrose-high fat diet-treated rats[J]. Scientific Reports, 2018, 8(1):3232
Skinner M K, Manikkam M, Tracey R, et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity[J]. BMC Medicine, 2013, 11:228
Manikkam M, Haque M M, Guerrero-Bosagna C, et al. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline[J]. PLoS One, 2014, 9(7):e102091
Manikkam M, Tracey R, Guerrero-Bosagna C, et al. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations[J]. PLoS One, 2013, 8(1):e55387
Lyssimachou A, Santos J G, André A, et al. The mammalian "obesogen" tributyltin targets hepatic triglyceride accumulation and the transcriptional regulation of lipid metabolism in the liver and brain of zebrafish[J]. PLoS One, 2015, 10(12):e0143911
Migliarini B, Piccinetti C C, Martella A, et al. Perspectives on endocrine disruptor effects on metabolic sensors[J]. General and Comparative Endocrinology, 2011, 170(3):416-423
Santangeli S, Notarstefano V, Maradonna F, et al. Effects of diethylene glycol dibenzoate and bisphenol A on the lipid metabolism of Danio rerio[J]. Science of the Total Environment, 2018, 636:641-655
Forner-Piquer I, Mylonas C C, Calduch-Giner J, et al. Endocrine disruptors in the diet of male Sparus aurata:Modulation of the endocannabinoid system at the hepatic and central level by di-isononyl phthalate and bisphenol A[J]. Environment International, 2018, 119:54-65
Lutfi E, Riera-Heredia N, Córdoba M, et al. Tributyltin and triphenyltin exposure promotes in vitro adipogenic differentiation but alters the adipocyte phenotype in rainbow trout[J]. Aquatic Toxicology, 2017, 188:148-158
Fong H C H, Ho J C H, Cheung A H Y, et al. Developmental toxicity of the common UV filter, benophenone-2, in zebrafish embryos[J]. Chemosphere, 2016, 164:413-420
Wang W W, Zhang X N, Qin J Y, et al. Long-term bisphenol S exposure induces fat accumulation in liver of adult male zebrafish (Danio rerio) and slows yolk lipid consumption in F1 offspring[J]. Chemosphere, 2019, 221:500-510
Forner-Piquer I, Santangeli S, Maradonna F, et al. Role of bisphenol A on the endocannabinoid system at central and peripheral levels:Effects on adult female zebrafish[J]. Chemosphere, 2018, 205:118-125
Forner-Piquer I, Maradonna F, Gioacchini G, et al. Dose-specific effects of di-isononyl phthalate on the endocannabinoid system and on liver of female zebrafish[J]. Endocrinology, 2017, 158(10):3462-3476
Lin J B, Wang C H, Liu J F, et al. Up-stream mechanisms for up-regulation of miR-125b from triclosan exposure to zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2017, 193:256-267
Traversi I, Gioacchini G, Scorolli A, et al. Alkylphenolic contaminants in the diet:Sparus aurata juveniles hepatic response[J]. General and Comparative Endocrinology, 2014, 205:185-196
Maradonna F, Nozzi V, Dalla Valle L, et al. A developmental hepatotoxicity study of dietary bisphenol A in Sparus aurata juveniles[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2014, 166:1-13
Maradonna F, Nozzi V, Santangeli S, et al. Xenobiotic-contaminated diets affect hepatic lipid metabolism:Implications for liver steatosis in Sparus aurata juveniles[J]. Aquatic Toxicology, 2015, 167:257-264
Kim B M, Jo Y J, Lee N, et al. Bisphenol A induces a distinct transcriptome profile in the male fish of the marine medaka Oryzias javanicus[J]. BioChip Journal, 2018, 12(1):25-37
Carnevali O, Notarstefano V, Olivotto I, et al. Dietary administration of EDC mixtures:A focus on fish lipid metabolism[J]. Aquatic Toxicology, 2017, 185:95-104
Huff M, da Silveira W A, Carnevali O, et al. Systems analysis of the liver transcriptome in adult male zebrafish exposed to the plasticizer (2-ethylhexyl) phthalate (DEHP)[J]. Scientific Reports, 2018, 8(1):2118
Qin J Y, Ru S G, Wang W W, et al. Long-term bisphenol S exposure aggravates non-alcoholic fatty liver by regulating lipid metabolism and inducing endoplasmic reticulum stress response with activation of unfolded protein response in male zebrafish[J]. Environmental Pollution, 2020, 263:114535
Sun L M, Ling Y H, Jiang J H, et al. Differential mechanisms regarding triclosan vs. bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq[J]. Chemosphere, 2020, 251:126318
李姣, 胡群, 罗佩, 等. 肝脏脂质代谢关键转录因子研究进展[J]. 动物医学进展, 2016, 37(4):90-93 Li J, Hu Q, Luo P, et al. Progress on key transcription factors in liver lipid metabolism[J]. Progress in Veterinary Medicine, 2016, 37(4):90-93(in Chinese)
Rosen E D, MacDougald O A. Adipocyte differentiation from the inside out[J]. Nature Reviews Molecular Cell Biology, 2006, 7(12):885-896
Tzameli I, Fang H, Ollero M, et al. Regulated production of a peroxisome proliferator-activated receptor-γ ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes[J]. Journal of Biological Chemistry, 2004, 279(34):36093-36102
Perez-Diaz S, Johnson L A, DeKroon R M, et al. Polymerase I and transcript release factor (PTRF) regulates adipocyte differentiation and determines adipose tissue expandability[J]. FASEB Journal, 2014, 28(8):3769-3779
Matsushita K, Morello F, Zhang Z P, et al. Nuclear hormone receptor LXRα inhibits adipocyte differentiation of mesenchymal stem cells with Wnt/beta-catenin signaling[J]. Laboratory Investigation, 2016, 96(2):230-238
Manteiga S, Lee K. Monoethylhexyl phthalate elicits an inflammatory response in adipocytes characterized by alterations in lipid and cytokine pathways[J]. Environmental Health Perspectives, 2017, 125(4):615-622
Chen H, Zhang W, Rui B B, et al. Di(2-ethylhexyl) phthalate exacerbates non-alcoholic fatty liver in rats and its potential mechanisms[J]. Environmental Toxicology and Pharmacology, 2016, 42:38-44
Zhang H Y, Xue W Y, Li Y Y, et al. Perinatal exposure to 4-nonylphenol affects adipogenesis in first and second generation rats offspring[J]. Toxicology Letters, 2014, 225(2):325-332
Jin Y X, Lin X J, Miao W, et al. Oral exposure of pubertal male mice to endocrine-disrupting chemicals alters fat metabolism in adult livers[J]. Environmental Toxicology, 2015, 30(12):1434-1444
Cocci P, Mosconi G, Arukwe A, et al. Effects of diisodecyl phthalate on PPAR:RXR-dependent gene expression pathways in sea bream hepatocytes[J]. Chemical Research in Toxicology, 2015, 28(5):935-947
唐春奇, 刘畅. 生物时钟与脂肪组织代谢整合机制研究进展[J]. 生命科学, 2015, 27(11):1418-1426 Tang C Q, Liu C. Advances on the relationship between the circadian clock and metabolism in adipose tissue[J]. Chinese Bulletin of Life Sciences, 2015, 27(11):1418-1426(in Chinese)
Sato F, Kohsaka A, Bhawal U K, et al. Potential roles of dec and Bmal1 genes in interconnecting circadian clock and energy metabolism[J]. International Journal of Molecular Sciences, 2018, 19(3):E781
Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice[J]. The Biochemical Journal, 2005, 386(Pt 3):575-581
Chen L H, Yang G R. PPARs integrate the mammalian clock and energy metabolism[J]. PPAR Research, 2014, 2014:653017
Grimaldi B, Bellet M M, Katada S, et al. PER2 controls lipid metabolism by direct regulation of PPARγ[J]. Cell Metabolism, 2010, 12(5):509-520
Weger M, Weger B D, Diotel N, et al. Real-time in vivo monitoring of circadian E-box enhancer activity:A robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock[J]. Developmental Biology, 2013, 380(2):259-273
杨钦, 田倩倩, 王茹. 内源性大麻素系统在运动减控体重中的作用机制研究[J]. 中国运动医学杂志, 2017, 36(2):169-175
Pagano C, Rossato M, Vettor R. Endocannabinoids, adipose tissue and lipid metabolism[J]. Journal of Neuroendocrinology, 2008, 20(Suppl 1):124-129
Matias I, Gonthier M P, Orlando P, et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia[J]. The Journal of Clinical Endocrinology and Metabolism, 2006, 91(8):3171-3180
O'Sullivan S E. Cannabinoids go nuclear:Evidence for activation of peroxisome proliferator-activated receptors[J]. British Journal of Pharmacology, 2007, 152(5):576-582
张林, 胡茂清. 表观遗传和肥胖[J]. 中国糖尿病杂志, 2013, 21(4):376-378 Zhang L, Hu M Q. Epigenetics and obesity[J]. Chinese Journal of Diabetes, 2013, 21(4):376-378(in Chinese)
赵飞. 双酚A对斑马鱼(Danio rerio)雌激素效应的DNA甲基化机制研究[D]. 青岛:中国海洋大学, 2015:9-13 Zhao F. The DNA methylation mechanism underlying the estrogenic effects of bisphenol A on zebrafish (Danio rerio)[D]. Qingdao:Ocean University of China, 2015:9 -13(in Chinese)
Fujiki K, Kano F, Shiota K, et al. Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes[J]. BMC Biology, 2009, 7:38
Melzner I, Scott V, Dorsch K, et al. Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinct CpGs in its proximal promoter[J]. The Journal of Biological Chemistry, 2002, 277(47):45420-45427
Noer A, Sørensen A L, Boquest A C, et al. Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue[J]. Molecular Biology of the Cell, 2006, 17(8):3543-3556
Wang L F, Jin Q H, Lee J E, et al. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis[J]. PNAS, 2010, 107(16):7317-7322
Strelow J M, Xiao M, Cavitt R N, et al. The use of nucleosome substrates improves binding of SAM analogs to SETD8[J]. Journal of Biomolecular Screening, 2016, 21(8):786-794
Tateishi K, Okada Y, Kallin E M, et al. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance[J]. Nature, 2009, 458(7239):757-761
Lee K H, Ju U I, Song J Y, et al. The histone demethylase PHF2 promotes fat cell differentiation as an epigenetic activator of both C/EBPα and C/EBPδ[J]. Molecules and Cells, 2014, 37(10):734-741
Miremadi A, Oestergaard M Z, Pharoah P D P, et al. Cancer genetics of epigenetic genes[J]. Human Molecular Genetics, 2007, 16(1):R28-R49
Ferrari A, Fiorino E, Giudici M, et al. Linking epigenetics to lipid metabolism:Focus on histone deacetylases[J]. Molecular Membrane Biology, 2012, 29(7):257-266
Feng D, Liu T, Sun Z, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism[J]. Science, 2011, 331(6022):1315-1319
朱磊, 路瑛丽, 冯连世, 等. microRNA调节脂代谢的研究进展[J]. 中国体育科技, 2016, 52(3):61-68 Zhu L, Lu Y L, Feng L S, et al. Research advancement of miRNA regulation effect on lipid metabolism[J]. China Sport Science and Technology, 2016, 52(3):61-68(in Chinese)
Yueh M F, Tukey R H. Triclosan:A widespread environmental toxicant with many biological effects[J]. Annual Review of Pharmacology and Toxicology, 2016, 56:251-272
Cocci P, Mosconi G, Palermo F A. Changes in expression of microRNA potentially targeting key regulators of lipid metabolism in primary gilthead sea bream hepatocytes exposed to phthalates or flame retardants[J]. Aquatic Toxicology, 2019, 209:81-90
Choi E M, Suh K S, Park S Y, et al. Orientin reduces the inhibitory effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin signaling pathway in murine 3T3-L1 adipocytes[J]. Chemico-Biological Interactions, 2020, 318:108978
Kim J, Sun Q C, Yue Y R, et al. 4,4'-dichlorodiphenyltrichloroethane (DDT) and 4, 4'-dichlorodiphenyldichloroethylene (DDE) promote adipogenesis in 3T3-L1 adipocyte cell culture[J]. Pesticide Biochemistry and Physiology, 2016, 131:40-45
Zhang L Y, Sun W J, Duan X Y, et al. Promoting differentiation and lipid metabolism are the primary effects for DINP exposure on 3T3-L1 preadipocytes[J]. Environmental Pollution, 2019, 255(Pt 1):113154
Wang Y X, Zhang J L, Pan M Q. Tributyltin targets hepatic transcriptional regulation of lipid metabolism in mice[J]. Toxicological & Environmental Chemistry, 2017, 99(3):492-504
Podratz P L, Merlo E, de Araújo J F P, et al. Disruption of fertility, placenta, pregnancy outcome, and multigenerational inheritance of hepatic steatosis by organotin exposure from contaminated seafood in rats[J]. Science of the Total Environment, 2020, 723:138000
Zhang Y Z, Zhang Z M, Zhou L T, et al. Di (2-ethylhexyl) phthalate disorders lipid metabolism via TYK2/STAT1 and autophagy in rats[J]. Biomedical and Environmental Sciences, 2019, 32(6):406-418
Baralić K, Buha Djordjevic A, Živančević K, et al. Toxic effects of the mixture of phthalates and bisphenol A-subacute oral toxicity study in Wistar rats[J]. International Journal of Environmental Research and Public Health, 2020, 17(3):E746
Shu L, Meng Q Y, Diamante G, et al. Prenatal bisphenol A exposure in mice induces multitissue multiomics disruptions linking to cardiometabolic disorders[J]. Endocrinology, 2019, 160(2):409-429
Li Y N, Zhang Q N, Fang J, et al. Hepatotoxicity study of combined exposure of DEHP and ethanol:A comprehensive analysis of transcriptomics and metabolomics[J]. Food and Chemical Toxicology, 2020, 141:111370
Doskey C M, Fader K A, Nault R, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters hepatic polyunsaturated fatty acid metabolism and eicosanoid biosynthesis in female Sprague-Dawley rats[J]. Toxicology and Applied Pharmacology, 2020, 398:115034
Faheem M, Lone K P. Oxidative stress and histopathologic biomarkers of exposure to bisphenol-A in the freshwater fish, Ctenopharyngodon idella[J]. Brazilian Journal of Pharmaceutical Sciences, 2018, 53(3):DOI:10.1590/s2175-97902017000317003
Guan Y J, Gao J C, Zhang Y Y, et al. Effects of bisphenol A on lipid metabolism in rare minnow Gobiocypris rarus[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2016, 179:144-149
Zhang J L, Zhang C N, Ma D D, et al. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus)[J]. Fish & Shellfish Immunology, 2017, 71:10-18
华江环, 史奇朋, 郭威, 等. 左炔诺孕酮对稀有鮈鲫脂质代谢的干扰效应[J]. 中国环境科学, 2020, 40(3):1345-1355 Hua J H, Shi Q P, Guo W, et al. Disrupting effects of levonorgestrel on lipid metabolism in Chinese rare minnow[J]. China Environmental Science, 2020, 40(3):1345-1355(in Chinese)
张林宝, 胡莹, 陈海刚, 等. 邻苯二甲酸二(2-乙基己基)酯对罗非鱼肝脏转录组影响研究[J]. 中国环境科学, 2019, 39(1):386-396 Zhang L B, Hu Y, Chen H G, et al. Transcriptome analysis in the liver of Nile tilapia(Oreochromis niloticus) after treated with di(2-ethylhexyl) phthalate[J]. China Environmental Science, 2019, 39(1):386-396(in Chinese)
Wang W W, Zhang X N, Wang Z H, et al. Bisphenol S induces obesogenic effects through deregulating lipid metabolism in zebrafish (Danio rerio) larvae[J]. Chemosphere, 2018, 199:286-296
Zhang J L, Sun P, Kong T, et al. Tributyltin promoted hepatic steatosis in zebrafish (Danio rerio) and the molecular pathogenesis involved[J]. Aquatic Toxicology, 2016, 170:208-215