Wang F, Guan W, Xu L, et al. Effects of nanoparticles on algae:Adsorption, distribution, ecotoxicity and fate[J]. Applied Sciences, 2019, 9(8):1534
|
Georgantzopoulou A, Balachandran Y L, Rosenkranz P, et al. Ag nanoparticles:Size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS[J]. Nanotoxicology, 2012, 7(7):1168-1178
|
倪方方, 王博林, 宋腾蛟, 等. 纳米银颗粒的毒性效应及作用机制研究进展[J]. 中国药理学通报, 2016, 32(5):593-598
Ni F F, Wang B L, Song T J, et al. Toxic effect and mechanism of silver nanoparticles[J]. Chinese Pharmacological Bulletin, 2016, 32(5):593-598(in Chinese)
|
Zhang S J, Jiang Y L, Chen C S, et al. Aggregation, dissolution, and stability of quantum dots in marine environments:Importance of extracellular polymeric substances[J]. Environmental Science & Technology, 2012, 46(16):8764-8772
|
Wu Q, Yao L, Zhao X, et al. Cellular uptake of few-layered black phosphorus and the toxicity to an aquatic unicellular organism[J]. Environmental Science & Technology, 2020, 54(3):1583-1592
|
Suresh A K, Pelletier D A, Doktycz M J. Relating nanomaterial properties and microbial toxicity[J]. Nanoscale, 2013, 5(2):463-474
|
Mao Y F, Li H, Huangfu X L, et al. Nanoplastics display strong stability in aqueous environments:Insights from aggregation behaviour and theoretical calculations[J]. Environmental Pollution, 2020, 258:113760
|
Deshmukh S P, Patil S M, Mullani S B, et al. Silver nanoparticles as an effective disinfectant:A review[J]. Materials Science & Engineering C, Materials for Biological Applications, 2019, 97:954-965
|
Trojanowski R, Fthenakis V. Nanoparticle emissions from residential wood combustion:A critical literature review, characterization, and recommendations[J]. Renewable and Sustainable Energy Reviews, 2019, 103:515-528
|
Chen C Y, Huang W L. Aggregation kinetics of diesel soot nanoparticles in wet environments[J]. Environmental Science & Technology, 2017, 51(4):2077-2086
|
Bondarenko O M, Heinlaan M, Sihtmäe M, et al. Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials:FP7 project NANOVALID[J]. Nanotoxicology, 2016, 10(9):1229-1242
|
Li K, Qian J, Wang P F, et al. Toxicity of three crystalline TiO2 nanoparticles in activated sludge:Bacterial cell death modes differentially weaken sludge dewaterability[J]. Environmental Science & Technology, 2019, 53(8):4542-4555
|
Zhang F, Wang Z, Song L, et al. Aquatic toxicity of iron-oxide-doped microplastics to Chlorella pyrenoidosa and Daphnia magna[J]. Environmental Pollution, 2020, 257:113451
|
Lekamge S, Miranda A F, Trestrail C, et al. The toxicity of nonaged and aged coated silver nanoparticles to freshwater alga Raphidocelis subcapitata[J]. Environmental Toxicology and Chemistry, 2019, 38(11):2371-2382
|
Bellingeri A, Bergami E, Grassi G, et al. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata[J]. Aquatic Toxicology, 2019, 210:179-187
|
Simeone F C, Costa A L. Assessment of cytotoxicity of metal oxide nanoparticles on the basis of fundamental physical-chemical parameters:A robust approach to grouping[J]. Environmental Science:Nano, 2019, 6(10):3102-3112
|
Fan G D, You Y F, Wang B, et al. Inactivation of harmful cyanobacteria by Ag/AgCl@ZIF-8 coating under visible light:Efficiency and its mechanisms[J]. Applied Catalysis B:Environmental, 2019, 256:117866
|
Fan G D, Bao M C, Zheng X M, et al. Growth inhibition of harmful cyanobacteria by nanocrystalline Cu-MOF-74:Efficiency and its mechanisms[J]. Journal of Hazardous Materials, 2019, 367:529-538
|
Avellan A, Simonin M, Anderson S M, et al. Differential reactivity of copper- and gold-based nanomaterials controls their seasonal biogeochemical cycling and fate in a freshwater wetland mesocosm[J]. Environmental Science & Technology, 2020, 54(3):1533-1544
|
Gilroy K D, Neretina S, Sanders R W. Behavior of gold nanoparticles in an experimental algal-zooplankton food chain[J]. Journal of Nanoparticle Research, 2014, 16(5):1-8
|
Zhang H, Chen Z, Huang Q. Study of the toxicity of ZnO nanoparticles to Chlorella sorokiniana under the influence of phosphate:Spectroscopic quantification, photosynthetic efficiency and gene expression analysis[J]. Environmental Science:Nano, 2020, 7(5):1431-1443
|
Dalai S, Pakrashi S, Joyce Nirmala M, et al. Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system[J]. Aquatic Toxicology, 2013, 138-139:1-11
|
Zhao J, Dai Y H, Wang Z Y, et al. Toxicity of GO to freshwater algae in the presence of Al2O3 particles with different morphologies:Importance of heteroaggregation[J]. Environmental Science & Technology, 2018, 52(22):13448-13456
|
Zhang L Q, Lei C, Yang K, et al. Cellular response of Chlorella pyrenoidosa to oxidized multi-walled carbon nanotubes[J]. Environmental Science:Nano, 2018, 5(10):2415-2425
|
Xu Y H, He Q, Liu C H, et al. Are micro- or nanoplastics leached from drinking water distribution systems?[J]. Environmental Science & Technology, 2019, 53(16):9339-9340
|
Mao Y F, Ai H N, Chen Y, et al. Phytoplankton response to polystyrene microplastics:Perspective from an entire growth period[J]. Chemosphere, 2018, 208:59-68
|
Zhang Y, Yang R X, Si X H, et al. The adverse effect of biochar to aquatic algae-The role of free radicals[J]. Environmental Pollution, 2019, 248:429-437
|
Behra R, Wagner B, Sgier L, et al. Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii[J]. Aquatic Geochemistry, 2015, 21(2-4):331-342
|
Zhang J L, Zhou Z P, Pei Y, et al. Metabolic profiling of silver nanoparticle toxicity in Microcystis aeruginosa[J]. Environmental Science:Nano, 2018, 5(11):2519-2530
|
Zhang J L, Xiang Q Q, Shen L, et al. Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae[J]. Chemosphere, 2020, 247:125936
|
Bhuvaneshwari M, Iswarya V, Archanaa S, et al. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions[J]. Aquatic Toxicology, 2015, 162:29-38
|
Chen P Y, Powell B A, Mortimer M, et al. Adaptive interactions between zinc oxide nanoparticles and Chlorella sp.[J]. Environmental Science & Technology, 2012, 46(21):12178-12185
|
Zhou H, Wang X J, Zhou Y, et al. Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach[J]. Analytical and Bioanalytical Chemistry, 2014, 406(15):3689-3695
|
Xia B, Chen B J, Sun X M, et al. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium:Growth inhibition, oxidative stress and internalization[J]. Science of the Total Environment, 2015, 508:525-533
|
Middepogu A, Hou J, Gao X, et al. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2018, 161:497-506
|
Melegari S P, Perreault F, Costa R H R, et al. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2013, 142-143:431-440
|
Fathi P, Sadeghi G, Hosseini M J, et al. Effects of copper oxide nanoparticles on the Chlorella algae in the presence of humic acid[J]. SN Applied Sciences, 2020, 2(2):1-11
|
Martín-de-Lucía I, Campos-Mañas M C, Agüera A, et al. Combined toxicity of graphene oxide and wastewater to the green alga Chlamydomonas reinhardtii[J]. Environmental Science:Nano, 2018, 5(7):1729-1744
|
Sendra M, Staffieri E, Yeste M P, et al. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?[J]. Environmental Pollution, 2019, 249:610-619
|
Morelli E, Cioni P, Posarelli M, et al. Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga[J]. Aquatic Toxicology, 2012, 122-123:153-162
|
Akhavan O, Ghaderi E. Enhancement of antibacterial properties of Ag nanorods by electric field[J]. Science and Technology of Advanced Materials, 2009, 10(1):015003
|
Bundschuh M, Seitz F, Rosenfeldt R R, et al. Effects of nanoparticles in fresh waters:Risks, mechanisms and interactions[J]. Freshwater Biology, 2016, 61(12):2185-2196
|
王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010, 31(6):1409-1418
Wang Z Y, Zhao J, Li N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms[J]. Environmental Science, 2010, 31(6):1409-1418(in Chinese)
|
陈春英, 徐莺莺, 王鹏. 纳米材料的毒理学效应及其关键影响因素[J]. 中国药理学与毒理学杂志, 2013, 2(suppl.):6-13
|
Pakrashi S, Dalai S, Prathna T C, et al. Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations[J]. Aquatic Toxicology, 2013, 132-133:34-45
|
Lei C, Zhang L Q, Yang K, et al. Toxicity of iron-based nanoparticles to green algae:Effects of particle size, crystal phase, oxidation state and environmental aging[J]. Environmental Pollution, 2016, 218:505-512
|
Wang Z Y, Li J, Zhao J, et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter[J]. Environmental Science & Technology, 2011, 45(14):6032-6040
|
Pereira M M, Mouton L, Yéprémian C, et al. Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris[J]. Journal of Nanobiotechnology, 2014, 12(1):1-13
|
Hu X G, Lu K C, Mu L, et al. Interactions between graphene oxide and plant cells:Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders[J]. Carbon, 2014, 80:665-676
|
Larguinho M, Correia D, Diniz M S, et al. Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels[J]. Journal of Nanoparticle Research, 2014, 16(8):1-11
|
Anand A, Unnikrishnan B, Wei S C, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents-A minireview[J]. Nanoscale Horizons, 2019, 4(1):117-137
|
Zhao J, Ning F Y, Cao X S, et al. Photo-transformation of graphene oxide in the presence of co-existing metal ions regulated its toxicity to freshwater algae[J]. Water Research, 2020, 176:115735
|
Chen X H, Zhang C, Tan L J, et al. Toxicity of Co nanoparticles on three species of marine microalgae[J]. Environmental Pollution, 2018, 236:454-461
|
Li X M, Schirmer K, Bernard L, et al. Silver nanoparticle toxicity and association with the alga Euglena gracilis[J]. Environmental Science:Nano, 2015, 2(6):594-602
|
Nespolo M. Free radicals in biology and medicine[J]. Acta Crystallographica Section D Structural Biology, 2017, 73(4):384-385
|
Sadiq I M, Pakrashi S, Chandrasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species:Scenedesmus sp. and Chlorella sp.[J]. Journal of Nanoparticle Research, 2011, 13(8):3287-3299
|
Wei C X, Zhang Y B, Guo J, et al. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus[J]. Journal of Environmental Sciences, 2010, 22(1):155-160
|
Barreto D M, Lombardi A T. Environmentally relevant concentrations of TiO2 nanoparticles affected cell viability and photosynthetic yield in the chlorophyceae Scenedesmus bijugus[J]. Water, Air, & Soil Pollution, 2016, 227(12):1-11
|
Huang Y W, Cambre M, Lee H J. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms[J]. International Journal of Molecular Sciences, 2017, 18(12):2702
|
Ouyang K, Walker S L, Yu X Y, et al. Metabolism, survival, and gene expression of Pseudomonas putida to hematite nanoparticles mediated by surface-bound humic acid[J]. Environmental Science:Nano, 2018, 5(3):682-695
|
Chen Y, Xu M, Zhang J, et al. Genome-wide DNA methylation variations upon exposure to engineered nanomaterials and their implications in nanosafety assessment[J]. Advanced Materials, 2017, 29(6):1604580
|
Zhang J, Guo W L, Li Q Q, et al. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms[J]. Environmental Science:Nano, 2018, 5(11):2482-2499
|
Maurer-Jones M A, Mousavi M P S, Chen L D, et al. Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis[J]. Chemical Science, 2013, 4(6):2564
|
Shao Z S, Wang W X. Biodynamics of silver nanoparticles in an estuarine oyster revealed by 110mAgNP tracing[J]. Environmental Science & Technology, 2020, 54(2):965-974
|
He X X, Xie C J, Ma Y H, et al. Size-dependent toxicity of ThO2 nanoparticles to green algae Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2019, 209:113-120
|
Wan J K, Chu W L, Kok Y Y, et al. Assessing the toxicity of copper oxide nanoparticles and copper sulfate in a tropical Chlorella[J]. Journal of Applied Phycology, 2018, 30(6):3153-3165
|
Feng L J, Sun X D, Zhu F P, et al. Nanoplastics promote microcystin synthesis and release from cyanobacterial Microcystis aeruginosa[J]. Environmental Science & Technology, 2020, 54(6):3386-3394
|
Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds:A sparkling tool for theranostics[J]. Materials Science and Engineering:C, 2019, 97:913-931
|
Wang J, Wang W X. Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms[J]. Journal of Zhejiang University:Science A, 2014, 15(8):573-592
|
Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology, 2008, 17(5):372-386
|
Rudramurthy G R, Swamy M K. Potential applications of engineered nanoparticles in medicine and biology:An update[J]. JBIC Journal of Biological Inorganic Chemistry, 2018, 23(8):1185-1204
|
Qu C C, Qian S F, Chen L, et al. Size-dependent bacterial toxicity of hematite particles[J]. Environmental Science & Technology, 2019, 53(14):8147-8156
|
Wang B, Yin J J, Zhou X Y, et al. Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment:Catalytic activities mediated by surface chemical states[J]. The Journal of Physical Chemistry C, 2012, 117(1):383-392
|
Nolte T M, Hartmann N B, Kleijn J M, et al. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption[J]. Aquatic Toxicology, 2017, 183:11-20
|
Miller R J, Bennett S, Keller A A, et al. TiO2 nanoparticles are phototoxic to marine phytoplankton[J]. PLoS One, 2012, 7(1):e30321
|
Kalman J, Paul K B, Khan F R, et al. Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain[J]. Environmental Chemistry, 2015, 12(6):662-672
|
Salas P, Odzak N, Echegoyen Y, et al. The role of size and protein shells in the toxicity to algal photosynthesis induced by ionic silver delivered from silver nanoparticles[J]. Science of the Total Environment, 2019, 692:233-239
|
Perreault F, Oukarroum A, Melegari S P, et al. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii[J]. Chemosphere, 2012, 87(11):1388-1394
|
Lin D H, Ji J, Long Z F, et al. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp.[J]. Water Research, 2012, 46(14):4477-4487
|
Foroozandeh P, Aziz A A, Mahmoudi M. Effect of cell age on uptake and toxicity of nanoparticles:The overlooked factor at the nanobio interface[J]. ACS Applied Materials & Interfaces, 2019, 11(43):39672-39687
|
Miao A J, Zhang X Y, Luo Z P, et al. Zinc oxide-engineered nanoparticles:Dissolution and toxicity to marine phytoplankton[J]. Environmental Toxicology and Chemistry, 2010, 29(12):2814-2822
|
Tejamaya M, Römer I, Merrifield R C, et al. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media[J]. Environmental Science & Technology, 2012, 46(13):7011-7017
|
Liu J, Zhang T, Tian L, et al. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand[J]. Environmental Science & Technology, 2019, 53(10):5805-5815
|
Wang Y, Zhang W, Shang J, et al. Chemical aging changed aggregation kinetics and transport of biochar colloids[J]. Environmental Science & Technology, 2019, 53(14):8136-8146
|
范功端, 陈薇, 郑小梅, 等. 纳米材料对藻细胞毒性效应及致毒机理[J]. 生态毒理学报, 2018, 13(2):23-33
Fan G D, Chen W, Zheng X M, et al. The cytotoxic effects of nanomaterials on algae and its mechanisms[J]. Asian Journal of Ecotoxicology, 2018, 13(2):23-33(in Chinese)
|
Huangfu X L, Ma C X, Huang R X, et al. Deposition kinetics of colloidal manganese dioxide onto representative surfaces in aquatic environments:The role of humic acid and biomacromolecules[J]. Environmental Science & Technology, 2019, 53(1):146-156
|
Thio B J R, Zhou D X, Keller A A. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles[J]. Journal of Hazardous Materials, 2011, 189(1-2):556-563
|
Liu X Y, Wazne M, Han Y, et al. Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes[J]. Journal of Colloid and Interface Science, 2010, 348(1):101-107
|
Mudunkotuwa I A, Pettibone J M, Grassian V H. Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials[J]. Environmental Science & Technology, 2012, 46(13):7001-7010
|
Adegboyega N F, Sharma V K, Siskova K, et al. Interactions of aqueous Ag+ with fulvic acids:Mechanisms of silver nanoparticle formation and investigation of stability[J]. Environmental Science & Technology, 2013, 47(2):757-764
|
Levard C, Hotze E M, Lowry G V, et al. Environmental transformations of silver nanoparticles:Impact on stability and toxicity[J]. Environmental Science & Technology, 2012, 46(13):6900-6914
|
Yu S J, Liu J F, Yin Y G, et al. Interactions between engineered nanoparticles and dissolved organic matter:A review on mechanisms and environmental effects[J]. Journal of Environmental Sciences, 2018, 63:198-217
|
Huang B, Wei Z B, Yang L Y, et al. Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae[J]. Environmental Science & Technology, 2019, 53(7):3871-3879
|
Ouyang S H, Zhou Q X, Zeng H, et al. Natural nanocolloids mediate the phytotoxicity of graphene oxide[J]. Environmental Science & Technology, 2020, 54(8):4865-4875
|
Saleh N, Kim H J, Phenrat T, et al. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns[J]. Environmental Science & Technology, 2008, 42:3349-3355
|
Bian S W, Mudunkotuwa I A, Rupasinghe T, et al. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments:Influence of pH, ionic strength, size, and adsorption of humic acid[J]. Langmuir, 2011, 27(10):6059-6068
|
Cupi D, Hartmann N B, Baun A. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions[J]. Ecotoxicology and Environmental Safety, 2016, 127:144-152
|
Wu B, Zhuang W Q, Sahu M, et al. Cu-doped TiO2 nanoparticles enhance survival of Shewanella oneidensis MR-1 under ultraviolet light (UV) exposure[J]. Science of the Total Environment, 2011, 409(21):4635-4639
|
Ou Q, Xu Y H, Li X L, et al. Interactions between activated sludge extracellular polymeric substances and model carrier surfaces in WWTPs:A combination of QCM-D, AFM and XDLVO prediction[J]. Chemosphere, 2020, 253:126720
|
Song J H, Xu Y H, Liu C H, et al. Interpreting the role of NO3-, SO42-, and extracellular polymeric substances on aggregation kinetics of CeO2 nanoparticles:Measurement and modeling[J]. Ecotoxicology and Environmental Safety, 2020, 194:110456
|
Huangfu X L, Xu Y H, Liu C H, et al. A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates[J]. Chemosphere, 2019, 219:766-783
|
Khan S S, Mukherjee A, Chandrasekaran N. Impact of exopolysaccharides on the stability of silver nanoparticles in water[J]. Water Research, 2011, 45(16):5184-5190
|
Xu H C, Jiang H L. Effects of cyanobacterial extracellular polymeric substances on the stability of ZnO nanoparticles in eutrophic shallow lakes[J]. Environmental Pollution, 2015, 197:231-239
|
Morelli E, Gabellieri E, Bonomini A, et al. TiO2 nanoparticles in seawater:Aggregation and interactions with the green alga Dunaliella tertiolecta[J]. Ecotoxicology and Environmental Safety, 2018, 148:184-193
|
Yang Y Y, Hou J, Wang P F, et al. Influence of extracellular polymeric substances on cell-NPs heteroaggregation process and toxicity of cerium dioxide NPs to Microcystis aeruginosa[J]. Environmental Pollution, 2018, 242:1206-1216
|
Davarpanah E, Guilhermino L. Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually?[J]. Ecotoxicology and Environmental Safety, 2019, 181:60-68
|
Chen J Y, Qian Y, Li H R, et al. The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa[J]. Environmental Science and Pollution Research, 2015, 22(16):12407-12414
|
Dalai S, Pakrashi S, Bhuvaneshwari M, et al. Toxic effect of Cr(Ⅵ) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae[J]. Aquatic Toxicology, 2014, 146:28-37
|
Iswarya V, Johnson J B, Parashar A, et al. Modulatory effects of Zn2+ ions on the toxicity of citrate-and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus[J]. Environmental Science and Pollution Research, 2017, 24(4):3790-3801
|