[1] |
Fan W H, Wang W X. Extraction of spiked metals from contaminated coastal sediments: a comparison of different methods[J]. Environ Toxicol Chem, 2003, 22:2659-2666
|
[2] |
Carbonaro R F, Mahony J D, Walter A, et al. Experimental and modeling investigation of metal release from metal-spiked sediment[J]. Environ Toxicol Chem, 2005, 24:3007-3019
|
[3] |
Fan W H, Wang W X, Chen J S. Speciation of Cd, Cr, and Zn in highly contaminated sediments and its influences on assimilation by marine bivalves[J]. Environ Sci Technol, 2002, 36:5164-5171
|
[4] |
Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of trace metals[J]. Anal Chem, 1979, 51:844-851
|
[5] |
Campbell P G C, Lewis A G, Chapman P M, et al. Biologically available metals in sediments[M]. Oitawa, Ontario: National Research Council of Canada, 1998
|
[6] |
US EPA. Framework for metals risk assessment[M]. Washington D C: Office of the Science Advisor, 2007
|
[7] |
National Research Council. Bioavailability of contaminants in soils and sediments[M]. Washington D C: National Academies Press 2003
|
[8] |
Mayer L M, Chen Z, Findlay R H, et al. Bioavailability of sedimentary contaminants subject to deposit-feeder digestion[J]. Environ Sci Technol, 1996, 30:2641-2645
|
[9] |
Lawrence A L, McAloon L M, Mason R P, et al. Intestinal solubilization of particle-associated organic and inorganic mercury as a measure of bioavailability to benthic invertebrates[J]. Environ Sci Technol, 1999, 33:1871-1876
|
[10] |
Fan W H, Wang W X. Extraction of spiked metals from contaminated coastal sediments: a comparison of different methods[J]. Environ Toxicol Chem, 2003, 22:2659-2666
|
[11] |
Voparil I M, Mayer L M. Commercially available chemicals that mimic a deposit feeder's (Arenicola marina) digestive solubilization of lipids[J]. Environ Sci Technol, 2004, 38:4334-4339
|
[12] |
Chen Z, Mayer M. Mechanisms of Cu solubilization during deposit feeding[J]. Environ Sci Technol, 1998, 32:770-775
|
[13] |
Chen Z, Mayer L M. Sedimentary metal bioavailability determined by the digestive constraints of marine deposit feeders: gut retention time and dissolved amino acids[J]. Mar Ecol Prog Ser, 1999, 176:139-151
|
[14] |
Chen Z, Mayer L M, Quetel C, et al. High concentrations of complexed metals in the guts of deposit feeders[J]. Limnol Oceanogr, 2000, 45:1358-1367
|
[15] |
Zhong H, Wang W X. Inorganic Hg binding with different sulfur species in anoxic sediments and their gut juice extractions[J]. Environ Toxicol Chem, 2009, 28:1851-1857
|
[16] |
Zhong H, Wang W X. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments[J]. Environ Pollut, 2009, 157: 981-986
|
[17] |
Zhong H, Wang W X. Methylmercury extraction by the gut juices of sipuncula Sipunculus nudus[J]. Environ Toxicol Chem, 2008, 27:138-145
|
[18] |
Zhong H, Wang W X. Influences of sediment composition on mercury partitioning, speciation and bioavailability in sediments[J]. Environ Pollut, 2008, 151:222-230
|
[19] |
Zhong H, Wang W X. Metal-solid interactions controlling the bioavailability of mercury from sediments to the clams and sipunculans[J]. Environ Sci Technol, 2006, 40:3794-3799
|
[20] |
Zhong H, Wang W X. Sediment-bound inorganic Hg extraction mechanisms in the gut fluids of marine deposit feeders[J]. Environ Sci Technol, 2006, 40:6181-6186
|
[21] |
Zhong H, Wang W X. Influences of aging on the bioavailability of sediment-bound Cd and Zn to deposit-feeding sipunculans and soldier crabs[J]. Environ Toxicol Chem, 2006, 25:2775-2780
|
[22] |
Turner A. Enzymatic mobilisation of trace metals from estuarine sediment[J]. Mar Chem, 2006, 98:140-147
|
[23] |
National Institute of Standard and Technology, NIST: NIST Critically selected stability constants of metal complexes database. Version 7, 2003
|
[24] |
Rabenstein D L. The aqueous solution chemistry of methylmercury and its complexes[J]. Accounts Chem Res, 1978, 11:100-107
|
[25] |
Yan Q L, Wang W X. Metal exposure and bioavailability to a marine deposit-feeding sipuncula Sipunculus nudus[J]. Environ Sci Technol, 2002, 36: 40-47
|
[26] |
Wang W X, Yan Q, Fan W, et al. The bioavailability of sedimentary metals from a contaminated bay[J]. Mar Ecol Prog Ser, 2002, 240:27-38
|
[27] |
Fan W H, Wang W X. Sediment geochemical controls on Cd, Cr, and Zn assimilation by the clam Ruditapes philippinarum[J]. Environ Toxicol Chem, 2001, 20:2309-2317
|
[28] |
Wang W X, Fisher N S. Assimilation of trace elements by the mussel, Mytilus edulis: Effects of diatom chemical composition[J]. Mar Biol, 1996, 125:715 724
|
[29] |
Gagnon C, Fisher N S. The bioavailability of sedimentbound Cd, Co, and Ag to the mussel Mytilus edulis[J]. Can J Fish Aquat Sc, 1997, 54:47 156
|
[30] |
Stecko J R P, Bendell-Young L I. Uptake of 109Cd from sediments by the bivalves Macoma balthica and Protothaca staminea[J]. Aquat Toxicol, 2000, 47:147 159
|
[31] |
Welfringer B, Zagury G J. Evaluation of two in vitro protocols for determination of mercury bioaccessibility: Influence of mercury fractionation and soil properties[J]. J Environ Qual, 2009, 38:2237-2244
|
[32] |
Gray J E, Plumlee G S, Morman S A, et al. In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids[J]. Environ Sci Technol, 2010, 44:4782-4788
|
[33] |
Luoma S N, Bryan G W, A statistical study of environmental factors controlling concentrations of heavy metals in the burrowing bivalve Scrobicularia plana and the polychaete Nereis diversicolor[J]. Estuar Coast Shelf Sci, 1982, 15:95-108
|
[34] |
Tessier A, Campbell P G C, Auclair J C, et al. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area[J]. Can J Fish Aquat Sci, 1984, 41:1463-1472
|
[35] |
Tessier A, Couillard Y, Campbell P G C, et al. Modeling Cd partitioning in oxic lake sediments and Cd concentrations in the freshwater bivalve Anodonta grandis[J]. Limnol Oceanogr, 1993, 38:1-17
|
[36] |
Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of trace metals[J]. Anal Chem, 1979, 51:844-851
|
[37] |
Bloom N S, Preus E, Katon J, et al. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils[J]. Anal Chim Acta, 2003, 479:233-248
|
[38] |
Slowey A J, Rytuba J J, Brown G E. Speciation of mercury and mode of transport from placer gold mine tailings[J]. Environ Sci Technol, 2005, 39:1547-1554
|
[39] |
Castelle S, Schafer J, Blanc G, et al. 50-year record and solid state speciation of mercury in natural and contaminated reservoir sediment, Appl[J]. Geochem, 2007, 22:1359-1370
|
[40] |
Shi J B, Liang L N, Jiang G B, et al. The speciation and bioavailability of mercury in sediments of Haihe River[J]. China Environ Int, 2005, 31:357-365
|
[41] |
Abi-Ghanem C,Bermond A. Fractionation studies of mercury in soils and sediments: A review of the chemical reagents used for mercury extraction[J]. Anal Chim Acta, 2009, 631:1-12
|
[42] |
Varekamp J C, Buchholtz ten Brink M R, Mecray E L, et al. Mercury in Long Island Sound sediments[J]. J Coast Res, 2000, 16:613-626
|
[43] |
Conaway C H, Squire S, Mason R P, et al. Mercury speciation in the San Francisco bay estuary[J]. Mar Chem, 2003, 80:199-225
|
[44] |
Huerta-Diza M A, Morse J W, A quantitative method for determination of trace metal concentrations in sedimentary pyrite[J]. Mar Chem, 1990, 29:119-144
|
[45] |
Tessier A, Campbell P G C, Bisson M. Particulate trace metal speciation in stream sediments and relationships with grain size: implications for geochemical exploration[J]. J Geochem Explor, 1982, 16:77-104
|
[46] |
Bono A. The partitioning of mercury in the solid components of sediment of the Saguenay fjord. McGill University, Montreal, Quebec, 1997
|
[47] |
Wang D Y, Qing C L, Guo T Y, et al. Effects of humic acid on transport and transformation of mercury in soil-plant system[J]. Water Air Soil Poll, 1997, 95:35-43
|
[48] |
Hammerschmidt C R, Fitzgerald W F, Lamborg C H, et al. Biogeochemistry of methylmercury in sediments of Long Island Sound[J]. Mar Chem, 2004, 90:31-52
|
[49] |
Arias M, Barral M T, Da Silva-Carvalhal J, et al. Interaction of Hg(Ⅱ) with kaolin-humic acid complexes[J]. Clay Miner, 2004, 39:35-45
|
[50] |
Cruz-Guzman M, Celis R, Hermosin M C, et al. Sorption-desorption of lead (Ⅱ) and mercury (Ⅱ) by model associations of soil colloids[J]. Soil Sci Soc Am J, 2003, 67:1378-1387
|
[51] |
Yu G F, Wu H T, Qing C L, et al. Bioavailability of humic substance-bound mercury to lettuce and its relationship with soil properties. Commun[J]. Soil Sci Plan, 2004, 35:1123-1139
|
[52] |
Hankanson L, Nilsson A, Andersson T. Mercury in fish in Swedish lakes[J]. Environ Pollut, 1988, 49:145-162
|
[53] |
Biester H 1, Muller G, Scholer H F. Binding and mobility of mercury in soils contaminated by chlor-alkali plant mercury emissions[J]. Sci Tot Environ, 2002, 284:191-203
|
[54] |
Sverdrup L E, Jensen J, Krogh P H, et al. Studies on the effect of soil aging on the toxicity of pyrene and phenanthrene to a soil-dwelling springtail[J]. Environ Toxicol Chem, 2002, 21:489-492
|
[55] |
Horvat M, Jereb V, Fajon V, et al. Mercury distribution in water, sediment and soil in the Idrijca and Socˇa river systems[J]. Geochem Explor Environ Anal, 2002, 2:287-296
|
[56] |
Naidu A S, Kelley J J, Goering J J, et al. Institute of Marine Science, University of Alaska, Fairbanks, AK, US: Trace metals and hydrocarbons in sediments of Elson Lagoon (barrow, northwest arctic Alaska) as related to the Prudhoe Bay industrial region. 2003
|
[57] |
Gobeil C, Cossa D. Mercury in sediments and sediment porewater in the Laurentian Trough[J]. Aquat Sci, 1993, 50:1794-1800
|
[58] |
Gagnon C, Pelletier E, Mucci A. Behaviour of anthropogenic mercury in coastal marine sediments[J]. Mar Chem, 1997, 59:159-176
|
[59] |
Berry W J, Hansen D J, Mahony J D, et al. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations[J]. Environ Toxicol Chem, 1996, 15:2067-2079
|
[60] |
Hansen D J, Berry W J, Mahony J D, et al. Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations[J]. Environ Toxicol Chem, 1996, 15:2080-2094
|
[61] |
Lee B G, Griscom S B, Lee J S, et al. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments[J]. Science, 2000, 287:282-284
|
[62] |
Ankley G T, Evaluation of metal/acid-volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates[J]. Environ Toxicol Chem, 1996, 15:2138-2146
|
[63] |
Rickard D R, Morse J W, Acid volatile sulfide (AVS)[J]. Mar Chem, 2005, 97:141-197
|
[64] |
Di Toro D M, Mahony J D, Hansen D J, et al. Toxicity of Cadmium in sediments: the role of acid volatile sulfides[J]. Environ Toxicol Chem, 1990, 9:1487-1502
|
[65] |
Griscom S B, Fisher N S, Luoma S N, Geochemical influences on assimilation of sediment-bound metals in clams and mussels[J]. Environ Sci Technol, 2000, 34:91-99
|
[66] |
Xia K, Skyllberg U L, Bleam W F, et al. X-ray Absorption spectroscopic evidence for the complexation of Hg(Ⅱ) by reduced sulfur in soil humic substances[J]. Environ Sci Technol, 1999, 33:257-261
|
[67] |
Ravichandran M. Interactions between mercury and dissolved organic matter-a review[J]. Chemosphere, 2004, 55:319-331
|
[68] |
Xu H, Allard B. Effects of a fulvic acid on the speciation and mobility of mercury in aqueous solutions[J]. Water Air Soil Pollut, 1991, 56:709-717
|
[69] |
Yin Y, Allen H E, Huang C P, et al. Kinetics of mercury(Ⅱ) adsorption and desorption on soil[J]. Environ Sci Technol, 1997, 31:496-503
|
[70] |
Wu F C, Cai Y R, Evans D, et al. Complexation between Hg(Ⅱ) and dissolved organic matter in stream waters: an application of fluorescence spectroscopy[J]. Biogeochem, 2004, 71:339-351
|
[71] |
Skyllberg U, Bloom P R, Qian J, et al. Complexation of mercury(Ⅱ) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups[J]. Environ Sci Technol, 2006, 40:4174-4180
|
[72] |
Han S, Gill G A, Determination of mercury complexation in coastal and estuarine waters using competitive ligand exchange method[J]. Environ Sci Technol, 2005, 39:6607-6615
|
[73] |
Khwaja A R, Bloom P R, Brezonik P L. Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter[J]. Environ Sci Technol, 2006, 40:844-849
|
[74] |
Lee Y H, Iverfeldt A, Measurement of methylmercury and mercury in run-off, lake and rain waters[J]. Water Air Soil Pollut, 1991, 56:309-320
|
[75] |
Leermakers M M, Meuleman C, Baeyens W. Mercury speciation in the Scheldt Estuary[J]. Water Air Soil Pollut, 1995, 80:641-652
|
[76] |
Sj blom A, Meili M, Sundbom M. The influence of humic substances on the speciation and bioavailability of dissolved mercury and methylmercury, measured as uptake by Chaoborus Larvae and loss by volatilization[J]. Sci Total Environ, 2000, 261:115-124
|
[77] |
Lawson L M, Mason R P. Factors controlling the bioaccumulation of mercury and methylmercury by the estuarine amphipod Leptocheirus[J]. Environ Pollut, 2001, 111:217-231
|
[78] |
Wernert V, Frimmel F H, Behra P. Mercury transport through a porous medium in presence of natural organic matter[J]. J Phys Ⅳ, 2003, 107:1361-1364
|
[79] |
Gorski P R, Cleckner L B, Hurley J P, et al. Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA[J]. Sci Total Environ, 2003, 304:327-348
|
[80] |
Mikac N, Niessen S, Ouddane B, et al. Speciation of mercury in sediments of the Seine estuary (France)[J]. Appl Organomet Chem, 1999, 13:715-725
|
[81] |
Hintelmann H, Keppel-Jones K, Evans R D. Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability[J]. Environ Toxicol Chem, 2000, 19:2204-2211
|
[82] |
Bruemmer G W, Gerth J, Tiller K G. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals[J]. J Soil Sci, 1988, 39:37-52
|
[83] |
Sparks D L, Zelazny L W, Martens D C. Kinetics of potassium desorption in soil using miscible displacement[J]. Soil Sci Soc Am J, 1980, 44:1205-1208
|
[84] |
Kelly C A, Rudd J W M, Holoka M H. Effect of pH on mercury uptake by aquatic bacterium: implications for Hg cycling[J]. Environ Sci Technol, 2003, 37:2941 2946
|
[85] |
Benoit J M, Mason R P, Gilmour C C. Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria[J]. Environ Toxicol Chem, 1999, 18:2138-2141
|
[86] |
Daughney C J, Siciliano S D, Rencz A N, et al. Hg(Ⅱ) Adsorption by bacteria: A surface complexation model and its application to shallow acidic lakes and wetlands in Kejimkujik National Park, Nova Scotia, Canada[J]. Environ Sci Technol, 2002, 36:1546-1553
|
[87] |
Kerin E, Gilmour C C, Roden E, et al. Mercury methylation among the dissimilatory iron-reducing bacteria[J]. Appl Environ Microbiol, 2006 72:7912-7921
|
[88] |
Jay J A, Murray K J, Gilmour C C, et al. Mercury methylation by Desulfovibrio desulfuricans ND132 in the presence of polysulfides[J]. Appl Environ Microbiol, 2002, 68:5741-5745
|
[89] |
Benoit J M, Gilmour C C, Mason R P, Aspects of the bioavailability of mercury for methylation in pure cultures of Desulfobulbous propionicus (1pr3)[J]. Appl Environ Microbiol, 2001, 67:51-58
|
[90] |
Benoit J M, Gilmour C C, Mason R P. The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbous propionicus (1pr3)[J]. Environ Sci Technol, 2001, 35:127-132
|
[91] |
Luoma S N, Johns C, Fisher N S, et al. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways[J]. Environ Sci Technol, 1992, 26:485-492
|
[92] |
Wang W X, Fisher N S, Luoma S N. Kinetic determinations of trace element bioaccumulation in the mussel, Mytilus edulis[J]. Mar Ecol Prog Ser, 1996, 140:91-113
|