

DOI:10.7524/j.issn.0254-6108.2021122301

李光辉, 蒋斌, 周文软, 等. 热脱附-气相色谱-质谱法测定机动车尾气中气相烷烃和多环芳烃含量[J]. 环境化学, 2023, 42(6): 1981-1991. LI Guanghui, JIANG Bin, ZHOU Wenqin, et al. Determination of gas phase alkanes and polycyclic aromatic hydrocarbons in vehicle exhaust by thermal desorption-gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2023, 42 (6): 1981-1991.

热脱附-气相色谱-质谱法测定机动车尾气中 气相烷烃和多环芳烃含量^{*}

李光辉^{1,2} 蒋 斌^{1,2} 周文钦¹ 刘俊文^{1,2} 郑君瑜^{1,2} 王伯光^{1,2} 刘永林^{1,3,4} 张展毅^{1,2 **}

(1.暨南大学环境与气候研究院,广州,511443;2.粤港澳环境质量协同创新联合实验室,广州,511443;3.中国科学院广州 地球化学研究所,有机地球化学国家重点实验室,广州,510640;4.杭州谱育科技发展有限公司,杭州,311305)

摘 要采用热脱附结合气相色谱质谱联用仪(TD-GC-MS),建立了机动车尾气中30种正构烷烃(C7—C36)、2种支链烷烃(植烷、姥鲛烷)和19种多环芳烃(PAHs)的分析方法.利用 Tenax-TA 吸附管采集机动车尾气样品,加入定量的内标物;热解吸后经 HP-5 色谱柱分离、在选择性离子监测(SIM)模式下用 GC-MS 检测,内标法定量.为提高方法的灵敏度、精准度等指标,优化了脱附管解吸温度、解吸时间,冷阱捕集温度、脱附温度、脱附时间和 GC-MS 分析条件.结果表明,51种目标物在1—50 ng范围内线性良好,相关系数(*R*²)均大于 0.994,方法检出限为 0.05—0.48 µg.m⁻³,定量下限为 0.20—1.90 µg.m⁻³,在低、中、高的 3 个加标水平下的回收率为 86.7%—119.9%,相对标准偏差(RSD, *n*=7)为 1.0%—5.7%,将其应用于轻型柴油车尾气样品的测定,共检测出 44 种目标物,包括 28 种正构烷烃、2 种支链烷烃、14 种 PAHs.该方法简便快速、稳定灵敏、准确度高,可满足机动车尾气中烷烃和 PAHs 的测定需求.

关键词 烷烃,多环芳烃,半/中等挥发性有机物,机动车尾气,气质联用仪,热脱附.

Determination of gas phase alkanes and polycyclic aromatic hydrocarbons in vehicle exhaust by thermal desorption-gas chromatography-mass spectrometry

LI Guanghui^{1,2} JIANG Bin^{1,2} ZHOU Wenqin¹ LIU Junwen^{1,2} ZHENG Junyu^{1,2} WANG Boguang^{1,2} LIU Yonglin^{1,3,4} ZHANG Zhanyi^{1,2 **}

Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China;
 Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, China;
 State Key Laboratory Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China;
 Hangzhou Puyu Technology Development Co., Ltd., Hangzhou, 311305, China)

Abstract An analytical method was established for the determination of 30 n-alkanes (C7–C36), 2

** 通信联系人 Corresponding author, Tel: 020-37336619, E-mail: zyzhang@jnu.edu.cn

²⁰²¹年12月23日收稿(Received: December 23, 2021).

^{*} 国家重点研发计划项目 (2018YFC0213904),国家自然科学基金 (41977178),广东省省级科技项目 (2017B030314057)和广东省 环境资源利用与保护重点实验室开放基金 (KLEPRU-201809)资助.

Supported by the National Key Research and Development Plan of China(2018YFC0213904), the National Natural Science Foundation of China (41977178), Guangdong Foundation for Program of Science and Technology Research (2017B030314057) and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization Open Fund (KLEPRU-201809).

42 卷

branched alkanes (phytane, pristane) and 19 polycyclic aromatic hydrocarbons (PAHs) in vehicle emission by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Samples were collected by Tenax-TA adsorption tube, and the internal standard was added. After desorbed by thermal desorption, the analytes were determined by GC-MS in selected ion monitor (SIM) mode after separation by HP-5 column, and quantified by internal standard method. In order to improve the sensitivity and precision of method, various parameters such as desorption temperature and time of adsorption tube / cold trap, capture temperature of cold trap, and the analysis conditions of GC-MS were optimized. Results showed that the calibration curves for 51 compounds exhibited good linearity in the concentration range of 1-50 ng, with all the correlation coefficients (R^2) morn than 0.994. The limits of detection and the limits of quantification were in the ranges of 0.05 -0.48 μ g·m⁻³ and 0.20—1.90 μ g·m⁻³, espectively. The average recoveries at low, medium and high spiked levels ranged from 86.7% to 119.9% with the relative standard deviations (RSDs, n = 7) of 1.0%—5.7%. The method was applied to the determination of alkane and PAHs in the exhaust of light diesel vehicle. A total of 44 targets were detected, including 28 n-alkanes, 14 PAHs and 2 branched alkanes. The method was simple, rapid, stable, sensitive and accurate, and was suitable for the determination of alkane and PAHs in motor vehicle emissions.

Keywords alkane, polycyclic aromatic hydrocarbons, semi-/intermediate-volatile organic compounds, vehicle exhaust, gas chromatography-mass spectrometry, thermal desorption.

烷烃和多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是大气环境中重要的污染物,与大气细粒子(fine particle, PM_{2.5})和臭氧(O₃)的形成和演化密切相关^[1-2],其中以苯并(a)芘为代表的 PAHs 具有强致癌性^[3],严重影响人体健康;根据饱和蒸气压浓度,可将其划分为挥发性有机污染物(volatile organic compounds, VOCs)和半/中等挥发性有机物(semi-/intermediate-volatile organic compounds, VOCs)和半/中等挥发性有机物(semi-/intermediate-volatile organic compounds, S/IVOCs)^[4]. VOCs 是二次有机气溶胶(secondary organic aerosol, SOA)的重要前体物,但并不能很好地解释城市站点中观测到有机气溶胶的总量^[5-6].烟雾箱研究表明,S/IVOCs对 SOA 的生成有重要贡献,但其形成机制尚不明确且严重被低估^[7-9],近年来越来越受到重视^[10-12].机动车尾气是我国城市大气中烷烃和 PAHs 的重要来源^[13],现阶段机动车尾气中烷烃和 PAHs 的研究多为颗粒态^[14-17],而气态烷烃和 PAHs 的相关报道较少,且以 VOCs为主^[18].因此完善机动车尾气中气态烷烃和 PAHs、尤其S/IVOCs 的成分谱和排放因子,对 SOA 来源解析的研究具有重要意义.

目前我国针对废气中 PAHs 的检测制定的标准方法较少,主要包括气质联用法(HJ646—2013)^[19] 和高效液相色谱法(HJ647—2013)^[20],但分析的 PAHs 组分及苯环数均较少;此外采样复杂、易污染、 目标物易发生反应等问题有待解决^[21];而对于废气中烷烃的检测,目前还没制定相应的标准方法.吸附 管采样-热脱附/气相色谱质谱法有采样过程简单、目标物被填料富集后不易反应、吸附管可重复使用 等优势;且样品分析无需复杂前处理,可检测沸点高、碳数多的化合物^[22].

为了探索机动车尾气中烷烃和 PAHs 的检测方法,同时尽可能准确分析更多的 S/IVOCs 物种,本研究借鉴环境气溶胶中烷烃和 PAHs 检测方法的最新研究成果^[23],以吸附管采样,采用热脱附-气相色谱-质谱联用系统(thermal desorption-gas chromatography-mass spectrometry, TD-GC-MS),建立了适用于机动车废气样品中 30 种正构烷烃(C7—C36)、2 种支链烷烃(植烷、姥鲛烷)和 19 种 PAHs(2—6 环)的检测方法;其中 C12—C36 烷烃及 PAHs 属 S/IVOCs^[4];该法具有检出限低、稳定性好、精密度高、定量准确等特点,可满足机动车尾气中烷烃和 PAHs 的检测需求.

1 实验部分(Experimental section)

1.1 仪器与试剂

7890B/5977 气相色谱-质谱联用仪(美国 Agilent 公司); TD100-xr 热脱附仪(配 U-T9TNX-2S 聚焦 冷阱)(英国 Marks 公司); Marks C1-AAXX-5003 不锈钢吸附管(填料: 200 ng Tenax-TA 35/60, 89 mm×

Ē

1983

6.4 mm)(英国 Marks 公司); CSLR 标样制备装置(英国 Marks 公司); BTH-10 型活化仪(北京踏实德研 仪器公司); ZC-QL 便携式大气(恒流)采样器(浙江恒达仪器仪表公司); SEMTECH-MPS 等比例稀释 系统(美国 Sensors 公司); 采样过滤器(孔径 0.22 μm, 天津津腾公司); 微量注射器(50、100、250、 500 μL, 瑞士 Hamilton 公司).

混合标准品:30种正构烷烃(C7—C36)混合标准溶液(1000 mg·L⁻¹于正己烷,上海安谱公司)、 19种 PAHs 混合标准溶液(500 mg·L⁻¹于二氯甲烷,上海安谱公司);单标:植烷标准溶液(100 mg·L⁻¹于 正己烷,上海安谱公司),姥鲛烷标准溶液(1000 mg·L⁻¹于正己烷,上海安谱公司);内标物:氘代二十四 烷(1000 mg·L⁻¹于正己烷,美国 Aldrich 公司),氘代荧蒽(2000 mg·L⁻¹于二氯甲烷,北京 BePure 公司). 试剂:甲醇(LC/MS 纯,上海麦克林公司)、正己烷(HPLC 纯,美国 Fisher chemical 公司)、二氯甲烷 (GC/MS 纯,美国 Fisher chemical 公司). 气体:高纯氦气、高纯氦气(纯度>99.999%,广州广气公司). 1.2 标准品的配制

分别取适量的正构烷烃、植烷和姥鲛烷、PAHs标准溶液,用甲醇/二氯甲烷(体积比 2:1)混合溶剂 定容至 5 mL,配制成浓度为:1、5、10、20、50 μg·mL⁻¹的 51 种目标物混合标准品使用液;取适量的内 标母液,以甲醇/二氯甲烷(体积比 2:1)为溶剂定容至 5 mL,配置成浓度为 25 μg·mL⁻¹的内标使用液;均 于 4 ℃ 保存,待用.用微量注射器依次取 1 μL 混合标准品使用液和 1 μL 内标使用液注入标样制备装 置,以流速为 80 mL·min⁻¹的高纯氮气吹扫 5 min,迅速取下吸附管,制备成目标物含量为 1—50 ng 的 标准样品管(内标物含量为 25 ng),标准样品管需现配现用.微量注射器在使用前后均依次用甲醇、二 氯甲烷、正己烷各清洗 30 次,进样前再用样品清洗 3 次;玻璃器皿使用前用重铬酸钾浓硫酸洗液浸泡 24 h,用纯水清洗干净后,依次用纯水、二氯甲烷、正己烷超声清洗 15 min,最后使用甲醇:二氯甲烷:正 己烷 1:1:1 的溶液清洗,晾干待用.

1.3 样品采集及保存

吸附管在采样前使用老化仪,在氮气流量 50 mL·min⁻¹、温度 320 ℃ 下老化 1 h,以除去杂质干扰. 老化后的吸附管两端应立即密封,用铝箔纸包裹放入密实袋中、置于装有活性炭的干燥器中 4 ℃ 避光 保存,待用.

采用车载尾气采样系统采集样品:机动车尾气从排气筒排出后,进入稀释器(稀释气为高纯氮气, 稀释比为1:30)稀释,经过滤器、干燥器除去颗粒物和水汽,再通过采样器(采样流量为0.1 L·min⁻¹,采 样时间为15 min)将稀释废气采集到吸附管中;详细的采样系统构成、采样方法和方法质控参见文献 [24].采样结束后立刻取下吸附管,用铝箔纸包裹放入密实袋中、置于装有活性炭的干燥器中4℃避光 保存,7d内分析完毕.

1.4 仪器条件

样品采集后,将吸附管置于热脱附仪中进行二级热脱附,脱附气体经气相色谱分离后用质谱检测, 根据保留时间、质谱图和特征离子定性,内标法定量.

1.4.1 热脱附条件

传输线温度: 250 ℃,吸附管初始温度: 35 ℃,聚焦冷阱初始温度: 35 ℃;吸附管解吸温度: 300 ℃, 解吸时间: 15 min,解吸流量: 50 mL·min⁻¹,解吸分流量: 100 mL·min⁻¹;聚焦冷阱捕集方式: 不分流,吹扫 时间: 4 min,吹扫流量: 50 mL·min⁻¹;聚焦冷阱捕集温度: -20 ℃;聚焦冷阱脱附温度: 300 ℃,脱附时间: 8 min,脱附分流流量: 5 mL·min⁻¹;聚焦冷阱加热速率: 100 ℃·s⁻¹;干吹流量: 50 mL·min⁻¹,干吹时间: 5 min; GC 循环时间: 60 min.

1.4.2 色谱条件

进样口温度: 200 ℃, 载气: 高纯氦气, 进样模式: 不分流; 色谱柱: Agilent HP-5 毛细管柱(30 m× 0.25 mm×0.25 µm); 恒流: 1.2 mL·min⁻¹; 升温程序: 初始温度 50 ℃, 保持 2 min; 以 20 ℃·min⁻¹ 升至 150 ℃, 保持 2 min; 再以 10 ℃·min⁻¹ 升至 310 ℃, 保持 25 min; 后运行温度 320 ℃, 保持 2 min. 1.4.3 质谱条件

离子源: EI 源; 调谐文件: BFB; 溶剂延迟时间: 4.2 min; 接口温度: 230 ℃; 离子源温度: 230 ℃; 四极 杆温度: 150 ℃; 传输线温度: 230 ℃; 电子能量: 70 eV; 扫描方式: 定性分析采用全扫描(SCAN), 扫描范 围: 30—500 amu; 定量采用选择性离子监测(selected ion monitoring, SIM), 扫描参数见表 1. 序号

中文名称

英文名称

No.	Chinese name	English name	CAS No.	Retention time	Quantitative ion	Qualitative ion
			目标物 Analytes			
1	正庚烷	Heptane	142-82-5	4.338	43	41,71
2	正辛烷	Octane	111-65-9	5.355	43	57,29
3	正壬烷	Nonane	111-84-2	6.387	43	57,85
4	正癸烷	Decane	124-18-5	7.397	57	43,71
5	正十一烷	Undecane	1120-21-4	8.408	57	43,41
6	正十二烷	Dodecane	112-40-3	9.458	57	43,71
7	萘	Naphthalene	91-20-3	9.506	128	127,129
8	正十三烷	Tridecane	629-50-5	10.568	57	43,71
9	正十四烷	Tetradecane	629-59-4	11.7	57	43,71
10	苊烯	Acenaphthylene	208-96-8	12.574	152	153,151
11	正十五烷	Pentadecane	629-62-9	12.839	57	43,71
12	苊	Acenaphthene	83-32-9	12.976	153	154,152
13	正十六烷	Hexadecane	544-76-3	13.963	57	43,71
14	芴	Fluorene	86-73-7	14.092	166	165,167
15	正十七烷	Heptadecane	629-78-7	15.061	57	43,71
16	姥鲛烷	Pristane	1921-70-6	15.131	57	43,71
17	正十八烷	Octadecane	593-45-3	16.119	57	43,71
18	植烷	Phytane	638-36-8	16.218	57	43,71
19	菲	Phenanthrene	[.] 85-01-8	16.271	178	176,179
20	茵	Anthracene	120-12-7	16.372	178	176,179
21	正十九烷	Nonadecane	629-92-5	17.132	57	43,71
22	正二十烷	Eicosane	112-95-8	18.108	57	71,43
23	正二十一烷	Heneicosane	629-94-7	19.046	58	71,44
24	荧蒽	Fluoranthene	206-44-0	19.088	202	203,200
25	芘	Pyrene	129-00-0	19.61	202	203,200
26	正二十二烷	Docosane	629-97-0	19.946	57	71,43
27	正二十三烷	Tricosane	638-67-5	20.809	57	71,43
28	1-甲基芘	1-Methylpyrene	2381-21-7	20.984	216	215,217
29	正二十四烷	Tetracosane	646-31-1	21.641	57	71,43
30	正二十五烷	Pentacosane	629-99-2	22.446	57	71,43
31	环戊烯(c,d)芘	Cyclopenta(c,d)pyrene	27208-37-3	22.502	226	227,224
32	苯并(a)蒽	Benzo(a) anthracene	56-55-3	22.509	228	226,229
33	崫	Chrysene	218-01-9	22.607	228	226,229
34	正二十六烷	Hexacosane	630-01-3	23.22	57	71,43
35	正二十七烷	Heptacosane	593-49-7	23.967	57	71,43
36	正二十八烷	Octacosane	630-02-4	24.681	57	71,43
37	苯并(b)荧蒽	Benzo(b)fluorathene	205-99-2	25.018	252	253,250
38	苯并(k)荧蒽	Benzo(k) fluoranthene	207-08-9	25.038	252	250,253
39	正二十九烷	Nonacosane	630-03-5	25.385	57	71,43
40	苯并(e)芘	Benzo(e)pyrene	192-97-2	25.55	252	253,250
41	苯并(a)芘	Benzo(a)pyrene	50-32-8	25.655	252	253,250
42	正三十烷	Triacontane	638-68-6	26.135	57	71,43
43	正三十一烷	Hentriacontane	630-04-6	26.961	57	43,71
44	正三十二烷	Dotriacontane	544-85-4	27.885	57	71,43
45	茚并(1,2,3-cd)芘	Indeno(1,2,3-c,d)pyrene	193-39-5	28.477	276	277,274
46	二苯并(a,h)蒽	Dibenz(a,h)anthtacene	53-70-3	28.571	278	279,139
47	正三十三烷	Tritriacontane	630-05-7	28.942	57	71,43
48	苯并(g,h,i)苝	Benzo(g,h,i)perylene	191-24-2	29.196	276	277,138

表 151 种目标化合物的 CAS 号、保留时间、定性及定量离子Table 1CAS No, retention time, qualitative and quantitative ions of 51 target compounds

CAS号

保留时间/min

定量离子(m/z)

定性离子(m/z)

					续表1			
中文名称	英文名称	CAS号	保留时间/min	定量离子(m/z)	定性离子(m/z)			
Chinese name	English name	CAS No.	Retention time	Quantitative ion	Qualitative ion			
正三十四烷	Tetratriacontane	14167-59-0	30.204	57	71,43			
正三十五烷	Pentatriacontane	630-07-9	31.742	57	71,43			
正三十六烷	Hexatriacontane	630-06-8	33.634	57	71,43			
内标物Internal standards								
氘代荧蒽	Fluoranthene-d10	93951-69-0	19.045	212	57			
氘代二十四烷	n-Tetracosane-d50	204244-81-5	21.304	66	82			
	中文名称 Chinese name 正三十四烷 正三十五烷 正三十六烷 「三十六烷 氘代荧蔥 氘代二十四烷	中文名称英文名称Chinese nameEnglish name正三十四烷Tetratriacontane正三十五烷Pentatriacontane正三十六烷Hexatriacontane「氘代荧蔥Fluoranthene-d10「氘代二十四烷 <i>n</i> -Tetracosane-d50	中文名称英文名称CAS号Chinese nameEnglish nameCAS No.正三十四烷Tetratriacontane14167-59-0正三十五烷Pentatriacontane630-07-9正三十六烷Hexatriacontane630-06-8内标物Internal standa万标物Internal standa氘代荧蔥Fluoranthene-d1093951-69-0氘代二十四烷 <i>n</i> -Tetracosane-d50204244-81-5	中文名称 英文名称 CAS号 保留时间/min Chinese name English name CAS No. Retention time 正三十四烷 Tetratriacontane 14167-59-0 30.204 正三十五烷 Pentatriacontane 630-07-9 31.742 正三十六烷 Hexatriacontane 630-06-8 33.634 広三十六烷 Hexatriacontane 630-06-8 19.045 氘代荧蒽 Fluoranthene-d10 93951-69-0 19.045 氘代二十四烷 n-Tetracosane-d50 204244-81-5 21.304	中文名称 英文名称 CAS号 保留时间/min 定量离子(m/z) Chinese name English name CAS No. Retention time Quantitative ion 正三十四烷 Tetratriacontane 14167-59-0 30.204 57 正三十五烷 Pentatriacontane 630-07-9 31.742 57 正三十五烷 Hexatriacontane 630-06-8 33.634 57 正三十六烷 Hexatriacontane 630-06-8 33.634 57 正三十六烷 Hexatriacontane 630-06-8 33.634 57 正三十六烷 Hexatriacontane 630-06-8 33.634 57 広気状気気 Fluoranthene-d10 93951-69-0 19.045 212 氘代荧点 n-Tetracosane-d50 204244-81-5 21.304 66			

2 结果与讨论(Results and discussion)

2.1 热脱附条件优化

热脱附条件的设定直接影响方法的灵敏度和精准度,其中吸附管条件(解吸温度、解吸时间和解 吸流速)和冷阱条件(捕集温度、解吸温度和解吸时间)尤为关键,故采用目标物含量为 10 ng 的标准品 管对其进行优化.

2.1.1 吸附管条件优化

吸附管解吸温度、解吸时间及载气流速主要影响目标物的解吸效率^[25-27].首先优化解吸温度,将 解吸温度分别设定为 250、280、300、320 ℃,其他方法参数设定为初始值^[23],考察各目标物的响应变 化,结果(图 1)显示,中、低沸点目标物的响应在不同解吸温度之间差异较小;高沸点目标物的响应随 解吸温度的升高而增加,至 300 ℃ 时响应达到高值,继续升温响应无明显变化;此外 Tenax 填料在 300 ℃ 以上长时间使用会降低吸附效率,因此吸附管解吸温度设定为 300 ℃.

采用同样的优化方式,依次设定不同的解吸时间(5—20 min)和载气流速(30—70 mL·min⁻¹),结果(图 1)显示,烷烃的响应在不同解吸时间之间差异较小, PAHs 的响应随着解吸时间的增加而提高,至 15 min 时响应达到高值;继续增加时长,部分目标物的响应反而降低,表明时间过长导致部分目标物在冷阱 Tenax 填料中被载气带走而损失.目标物的响应在不同的载气流速之间的差异较小,整体上50 mL·min⁻¹时响应最高.因此将脱附管解吸时间和载气流速分别设定为 15 min 和 50 mL·min⁻¹. 2.1.2 冷阱条件优化

冷阱捕集温度主要影响目标物的捕集效率、冷阱脱附温度和脱附时间主要影响目标物的脱附效 率^[25-27]. 脱附管条件设定为优化值,采用 2.1.1节的优化方式,依次设定不同的捕集温度(-10— -25℃)、脱附温度(280—320℃)和脱附时间(4—10 min).结果(图 2)显示,烷烃的响应几乎不受捕集 温度变化的影响,而 PAHs 的响应随着捕集温度的降低而增加,在-20℃时响应值最高;继续降温, PAHs 的响应均有不同程度的下降,表明当实际捕集温度过低会导致 PAHs 的捕集效率降低.脱附温度 为 300℃ 时所有目标物的响应均高于脱附温度为 280℃ 时的响应, PAHs 表现尤其显著;继续升高温 度,目标物的响应值无显著变化.目标物的响应随着脱附时间的增加而提高,中、高沸点目标物尤为显 著,在 8 min 时响应最高;继续增加时长,目标物的响应无显著变化.因此将冷阱捕集温度、脱附温度和 脱附时间分别设定为-20℃、300℃和 8 min.

2.2 GC-MS 条件优化

已有研究表明, 烷烃及 PAHs 组分在中等极性色谱柱 HP-5(30 m×0.25 mm×0.25 µm)色谱柱上均有 较好的分离度和峰形^[23], 故本研究采用 HP-5 色谱柱对样品进行分离.由于目标物数量多、沸点跨度 (98—536 ℃)大, 为得到最佳的目标物响应、分离度和峰形, 本研究采用程序升温及 2.1.1 节的优化方 式, 使用目标物含量为 10 ng 的标准品管对柱初温、柱终温、升温速率、柱流速、梯度温度、恒温时间 等重要参数进行逐一优化, 最终结果见 1.4.2 节. 使用目标物含量为 10 ng 的标准品管在 SCAN 扫描下 采集目标物的质谱图,根据 Nist14 谱库检索及保留时间对 51 种目标物及 2 种内标物进行定性分析并 找出合适的定性定量离子(表 1);为提高方法灵敏度、降低方法检出限, MS 采用 SIM 扫描对 51 种目 标物进行定量分析,总离子流图见图 3.由图 3 可知 51 种目标物在较短的时间(34 min)内完全出峰,基

线平稳、峰形良好,所有目标物均得到有效分离.

2.3 方法评估

2.3.1 线性范围、检出限与测定下限

分别抽取 1 μL 浓度分别为 1、5、10、20、50 μg·mL⁻¹ 的混合标准品使用液,注入老化好的吸附管 中,同时加入 1 μL 内标使用液(25 μg·mL⁻¹),制成标准品管,对应校正点目标物含量分别为 1、5、10、 20、50 ng,内标含量为 25 ng,在优化条件下测定,每个校正点重复 3 次.各目标物以外标与内标的定量 离子峰面积之比(y)对浓度之比(x)绘制标准曲线.结果显示,51 种目标物在 1—50 ng 范围内线性良 好,相关性系数(*R*²)为 0.994—1.000. 配置目标物含量为 0.2 ng 的标准品管,重复测定 7 次,按照 HJ168—2020^[28]方法计算得 51 种目标物的检出限(MDL)为 0.05—0.48 μg·m⁻³,定量下限(LOQ)为 0.20—1.90 μg·m⁻³.

2.3.2 准确度及精密度

Table 2

对老化后的空吸附管分别进行 2、25、45 ng 水平的加标实验, 重复测定 7次; 计算得 51 种目标物 在 3 个加标水平下的回收率分别为: 91.3%—119.9%, 86.7%—105.2%, 90.2%—109.3%; 相对标准偏 差 RSD(*n*=7)分别为: 1.0%—5.2%, 1.9%—5.7%, 1.7%—5.3%.

上述质控指标均优于 HJ646—2013^[19]、HJ647—2013^[20]要求,满足机动车尾气中烷烃和 PAHs 含量的测定需求,详情见表 2.

Linear ranges, correlation coefficient (R^2), recoveries, RSDs(n=7), MDLs and LOQs of 51 target compounds

检出限/ 定量下限/ 序号 化合物 线性方程 回收率/% 相对标准偏差/% 相关系数R² $(\mu g \cdot m^{-3})$ $(\mu g \cdot m^{-3})$ Compound RSD No. Linear equation Recovery MDL LOQ 1 正庚烷 Heptane y=0.26x0.999 0.07 0.29 102.3, 86.7, 95.8 2.4, 4.5, 2.8 正辛烷 Octane 2 y=0.64x+0.030.999 0.05 0.21 102.9, 96.2, 94.7 1.3, 4.7, 3.5 正壬烷 Nonane y=0.62x+0.031.000 100.4, 94.8, 95.7 3 0.11 0.45 1.3, 3.1, 3.6 正癸烷 Decane 4 y=0.70x+0.041.000 0.10 0.42 100.6, 93.9, 96.6 1.8, 4.0, 2.8 正十一烷 Undecane 5 *y*=0.73*x*+0.05 1.000 0.15 0.59 103.8, 94.3, 97.3 2.4, 3.9, 3.0 正十二烷 Dodecane 6 *y*=0.77*x*+0.03 1.000 0.14 0.55 101.5, 94.3, 95.6 2.8, 3.5, 2.8 萘 Naphthalene 7 y=0.92x+0.040.999 0.39 92.6, 99.0, 90.2 2.2, 3.8, 4.8 1.56 正十三烷 Tridecane y=0.75x+0.020.17 98.5, 93.5, 97.7 3.6, 3.6, 2.8 8 1.000 0.68

表 2 51 种目标物的线性范围、相关系数、回收率、相对标准偏差(n=7)、检出限及定量下限

							续表 2
序号 No.	化合物 Compound	线性方程 Linear equation	相关系数R ²	检出限/ (µg·m ⁻³) MDL	定量下限/ (µg·m ⁻³) LOQ	回收率/% Recovery	相对标准偏差/% RSD
9	正十四烷 Tetradecane	y=0.76x+0.06	0.999	0.16	0.66	100.8, 93.9, 98.0	3.9, 3.6, 2.4
10	苊烯 Acenaphthylene	<i>y</i> =0.92 <i>x</i> -0.01	0.999	0.40	1.62	91.6, 98.8, 98.1	3.1, 3.4, 3.7
11	正十五烷 Pentadecane	y=0.78x	0.999	0.24	0.95	103.9,93.3, 98.8	3.1, 2.8, 1.9
12	苊 Acenaphthene	<i>y</i> =0.55 <i>x</i> +0.01	0.999	0.46	1.85	97.0, 101.3, 97.1	2.9, 1.9, 2.1
13	正十六烷 Hexadecane	<i>y</i> =0.78 <i>x</i>	0.999	0.20	0.81	105.8, 92.7, 98.9	4.1, 2.0, 1.7
14	芴 Fluorene	<i>y</i> =0.64 <i>x</i>	0.999	0.23	0.93	111.2, 96.8, 92.8	5.1, 3.9, 4.4
15	正十七烷 Heptadecane	<i>y</i> =0.74 <i>x</i>	0.999	0.33	1.31	107.2, 92.4, 99.0	4.7, 2.8, 2.2
16	姥鲛烷 Pristane	<i>y</i> =0.68 <i>x</i> +0.01	1.000	0.23	0.93	98.7, 95.2, 93.1	2.3, 2.5, 1.7
17	正十八烷 Octadecane	<i>y</i> =0.76 <i>x</i>	1.000	0.23	0.94	103.0, 90.8, 100.5	4.7, 4.1, 2.6
18	植烷 Phytane	<i>y</i> =0.70 <i>x</i> +0.01	1.000	0.16	0.66	99.5, 96.2, 96.2	2.2, 1.6, 1.9
19	菲 Phenanthrene	<i>y</i> =0.86 <i>x</i>	0.999	0.18	0.71	95.2, 91.3, 99.5	1.4, 2.8, 4.4
20	蒽 Anthracene	<i>y</i> =0.87 <i>x</i> -0.03	0.999	0.47	1.86	119.7, 93.3, 92.2	2.2, 4.9, 4.9
21	正十九烷 Nonadecane	<i>y</i> =0.73 <i>x</i>	0.999	0.33	1.31	106.2, 89.7, 99.3	4.0, 4.9, 2.4
22	正二十烷 Eicosane	y=0.72x	0.999	0.46	1.84	108.2, 91.4, 99.1	4.7, 2.3, 2.3
23	正二十一烷 Heneicosane	<i>y</i> =0.69 <i>x</i> -0.01	0.999	0.33	1.34	105.9, 91.4, 98.9	5.2, 2.1, 2,7
24	荧蒽 Fluoranthene	<i>y</i> =0.89 <i>x</i> +0.01	0.999	0.41	1.62	96.4, 94.9, 90.7	1.5, 3.4, 5.0
25	芘 Pyrene	<i>y</i> =0.94 <i>x</i> +0.01	0.999	0.37	1.47	91.3, 96.3, 97.7	4.9, 2.6, 2.9
26	正二十二烷 Docosane	<i>y</i> =0.75 <i>x</i> -0.01	0.999	0.34	1.36	102.6, 90.6, 98.8	4.8, 1.9, 3.1
27	正二十三烷 Tricosane	<i>y</i> =0.76 <i>x</i> -0.01	0.999	0.27	1.06	105.6, 93.7, 103.1	3.8, 2.4, 3.5
28	1-甲基芘 1-Methylpyrene	<i>y</i> =0.63 <i>x</i> -0.01	0.999	0.48	1.90	118.7, 96.3, 94.9	2.0, 3.1, 4.1
29	正二十四烷 Tetracosane	y=0.75x	0.998	0.25	1.00	115.9, 92.0, 97.4	4.5, 3.0, 4.5
30	正二十五烷 Pentacosane	y=0.73x-0.01	0.999	0.37	1.48	114.5, 93.9, 98.0	5.1, 3.9, 2.5
31	が以烯(c,d) 论 Cyclopenta(c,d) pvrene	<i>y</i> =0.16 <i>x</i> -0.01	0.999	0.17	0.70	107.3, 92.4, 101.8	3.0, 2.5, 4.3
32	苯并(a)蒽 Benzo(a)anthracene	<i>y</i> =0.65 <i>x</i> -0.01	0.999	0.20	0.78	104.5, 102.1, 96.2	3.6, 4.1, 3.0
33	䓛 Chrysene	<i>y</i> =0.67 <i>x</i> +0.01	0.999	0.32	1.27	100.7, 94.2, 95.2	2.8, 4.8, 4.2
34	正二十六烷 Hexacosane	<i>y</i> =0.67 <i>x</i>	0.999	0.39	1.55	104.7, 93.6, 97.9	3.2, 3.8, 3.2
35	正二十七烷 Heptacosane	<i>y</i> =0.63 <i>x</i>	0.999	0.18	0.72	106.8, 93.2, 98.9	3.2, 3.5, 3.7
36	正二十八烷 Octacosane	<i>y</i> =0.61 <i>x</i>	0.999	0.42	1.68	117.2, 90.4, 98.5	1.9, 3.2, 4.1
37	苯并(b)荧蒽 Benzo(b)fluorathene	y=1.38x+0.02	0.998	0.24	0.96	111.6, 97.1, 97.8	4.5, 3.2, 2.4
38	苯并(k)荧蒽 Benzo(k)fluoranthene	<i>y</i> =1.37 <i>x</i> +0.04	0.998	0.28	1.12	111.9, 102.1, 105.7	3.1, 3.0, 4.8
39	正二十九烷 Nonacosane	<i>y</i> =0.57 <i>x</i> -0.01	0.998	0.37	1.48	101.8, 92.1, 99.6	3.9, 2.4, 4.8
40	苯并(e)芘 Benzo(e)pyrene	<i>y</i> =0.40 <i>x</i> +0.02	0.999	0.44	1.75	103.3, 99.4, 101.9	1.7, 3.1, 3.1
41	苯并(a)芘 Benzo(a)pyrene	<i>y</i> =0.33 <i>x</i> +0.01	0.998	0.39	1.55	108.6, 101.5, 98.2	3.6, 4.2, 3.9
42	正三十烷 Triacontane	<i>y</i> =0.50 <i>x</i> -0.02	0.998	0.45	1.82	111.6, 105.2, 103.9	4.4, 5.7, 4.8
43	正三十一烷 Hentriacontane	<i>y</i> =0.36 <i>x</i>	0.999	0.39	1.55	116.0, 105.2, 103.9	3.2, 2.7, 2.7
44	正三十二烷 Dotriacontane	<i>y</i> =0.33 <i>x</i> -0.01	0.999	0.43	1.74	115.9, 99.4, 106.0	2.7, 5.3, 4.2
45	市并(1,2,3-cd)芘 Indeno(1,2,3-c,d) pyrene	<i>y</i> =0.07 <i>x</i> + 0.02	0.995	0.32	1.28	119.9, 101,8, 106.4	1.0, 4.3, 4.0
46	_本开(a,h)恩 Dibenz(a,h) anthtacene	<i>y</i> =0.03 <i>x</i> +0.02	0.996	0.16	0.64	105.9, 104.3, 97.8	4.4, 3.1, 2.5
47	正三十三烷 Tritriacontane	<i>y</i> =0.24 <i>x</i>	0.997	0.36	1.44	109.3, 94.6, 105.5	3.3, 3.4, 2.9
48	苯并(g,h,i)	<i>y</i> =0.05 <i>x</i> +0.06	0.994	0.12	0.47	119.6, 102.2, 100.6	1.0, 3.9, 5.3
49	正三十四烷 Tetratriacontane	<i>y</i> =0.15 <i>x</i> +0.13	0.998	0.09	0.35	116.8, 100.5, 97.0	1.6, 4.3, 2.5
50	正三十五烷 Pentatriacontane	y=0.06x+0.02	0.999	0.07	0.27	113.9, 103.2, 109.3	1.7, 5.5, 4.4
51	正三十六烷 Hexatriacontane	v=0.03x+0.04	0 996	0.05	0.20	106 1 101 2 104 5	134335

2.4 实际样品分析

按照上述方法,采集1辆国Ⅳ轻型柴油车在匀速行驶状态下的尾气并进行检测,以验证该方法测 定实际样品的可行性.结果显示实际样品的峰形良好(图4);共检测出44种目标物,各目标物浓度均 在方法线性范围内,总含量为7096.74 μg·m⁻³,其中包括28种正构烷烃(总含量为6467.61 μg·m⁻³)、2种 支链烷烃(总含量为211.07 μg·m⁻³)和14种 PAHs(总含量为418.05 μg·m⁻³).

由表 3 可知,该辆国IV轻型柴油车尾气中正十五烷、正十六烷、正庚烷、正十七烷和正十四烷等为 主要污染物,含量依次为 933.98、792.22、681.15、642.17、346.03 μg·m⁻³;萘的含量为 74.25 μg·m⁻³,为首 要 PAHs 组分;此外, S/IVOCs(包括 C12—C36 正构烷烃、姥鲛烷、植烷、19 种 PAHs)总含量为 5828.60 μg·m⁻³,占烷烃和 PAHs 总含量的 82.1%.

	Table 5 Concentration of a	likanes and 17115 h	ii exilaus	t gas from light dieser veniere (µg in	,
序号	化合物	浓度	序号	化合物	浓度
No.	Compound	Concentration	No.	Compound	Concentration
1	正庚烷 Heptane	681.15	24	荧蒽 Fluoranthene	28.06
2	正辛烷 Octane	244.41	25	芘 Pyrene	27.01
3	正壬烷 Nonane	94.87	26	正二十二烷 Docosane	74.54
4	正癸烷 Decane	145.65	27	正二十三烷 Tricosane	91.89
5	正十一烷 Undecane	102.06	28	1-甲基芘 1-Methylpyrene	33.73
6	正十二烷 Dodecane	219.51	29	正二十四烷 Tetracosane	119.11
7	萘 Naphthalene	74.25	30	正二十五烷 Pentacosane	228.38
8	正十三烷 Tridecane	120.93	31	环戊烯(c,d)芘 Cyclopenta(c,d)pyrene	56.61
9	正十四烷 Tetradecane	346.03	32	苯并(a)蒽 Benzo(a)anthracene	24.01
10	苊烯 Acenaphthylene	10.47	33	䓛 Chrysene	45.17
11	正十五烷 Pentadecane	933.98	34	正二十六烷 Hexacosane	179.61
13	正十六烷 Hexadecane	792.22	35	正二十七烷 Heptacosane	168.57
14	芴 Fluorene	5.34	36	正二十八烷 Octacosane	139.84
15	正十七烷 Heptadecane	642.17	37	苯并(b)荧蒽 Benzo(b)fluorathene	7.82
16	姥鲛烷 Pristane	92.19	38	苯并(k)荧蒽 Benzo(k)fluoranthene	12.23
17	正十八烷 Octadecane	312.47	39	正二十九烷 Nonacosane	151.16
18	植烷 Phytane	118.88	40	苯并(e)芘 Benzo(e)pyrene	9.74
19	菲 Phenanthrene	34.23	42	正三十烷 Triacontane	140.27
20	蒽 Anthracene	49.39	43	正三十一烷 Hentriacontane	98.18
21	正十九烷 Nonadecane	92.15	44	正三十二烷 Dotriacontane	76.14
22	正二十烷 Eicosane	103.48	47	正三十三烷 Tritriacontane	25.42
23	正二十一烷 Heneicosane	77.21	49	正三十四烷 Tetratriacontane	66.21

表 3 轻型柴油车尾气中烷烃和 PAHs 含量(µg·m⁻³) **Table 3** Concentration of alkanes and PAHs in exhaust gas from light diesel vehicle (µg·m⁻³)

环 :

3 结论(Conclusion)

本研究采用吸附管采样,基于热脱附/气相色谱-质谱联用系统,建立了一种测定机动车尾气中 30种正构烷烃(C7—C36)、2种支链烷烃(植烷、姥鲛烷)和19种 PAHs(2—6环)的分析方法,该方法 简便快速、稳定灵敏、准确度高,满足机动车尾气中烷烃和 PAHs 的检测需求,有助于完善机动车尾气 污染物的成分谱及排放因子,为进一步厘清环境大气中 SOA 的来源奠定了坚实可靠的基础.

参考文献 (References)

- [1] LEE S C, CHIU M Y, HO K F, et al. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong [J]. Chemosphere, 2002, 48(3): 375-382.
- [2] LI Y J, REN B N, QIAO Z, et al. Characteristics of atmospheric intermediate volatility organic compounds (IVOCs) in winter and summer under different air pollution levels [J]. Atmospheric Environment, 2019, 210: 58-65.
- [3] YU Q Q, GAO B, LI G H, et al. Attributing risk burden of PM_{2.5}-bound polycyclic aromatic hydrocarbons to major emission sources: Case study in Guangzhou, South China [J]. Atmospheric Environment, 2016, 142: 313-323.
- [4] ROBINSON A L, DONAHUE N M, SHRIVASTAVA M K, et al. Rethinking organic aerosols: semivolatile emissions and photochemical aging [J]. Science, 2007, 315(5816): 1259-1262.
- [5] HUNTER J F, DAY D A, PALM B B, et al. Comprehensive characterization of atmospheric organic carbon at a forested site [J]. Nature Geoscience, 2017, 10(10): 748-753.
- [6] HENZE D K, SEINFELD J H, NG N L, et al. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways [J]. Atmospheric Chemistry and Physics, 2008, 8(9): 2405-2420.
- [7] 谢绍东,田晓雪.挥发性和半挥发性有机物向二次有机气溶胶转化的机制 [J].化学进展, 2010, 22(4): 727-733.
 XIE S D, TIAN X X. Formation mechanism of secondary organic aerosols from the reaction of volatile and semi-volatile compounds [J]. Progress in Chemistry, 2010, 22(4): 727-733(in Chinese).
- [8] LIU X X, DAY D A, KRECHMER J E, et al. Direct measurements of semi-volatile organic compound dynamics show near-unity mass accommodation coefficients for diverse aerosols [J]. Communications Chemistry, 2019, 2: 98.
- [9] PYE H O T, SEINFELD J H. A global perspective on aerosol from low-volatility organic compounds [J]. Atmospheric Chemistry and Physics, 2010, 10(9): 4377-4401.
- [10] ZHAO Y L, HENNIGAN C J, MAY A A, et al. Intermediate-volatility organic compounds: A large source of secondary organic aerosol [J]. Environmental Science & Technology, 2014, 48(23): 13743-13750.
- [11] 唐荣志, 王辉, 刘莹, 等. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献 [J]. 化学进展, 2019, 31(1): 180-190.
 TANG R Z, WANG H, LIU Y, et al. Constituents of atmospheric semi-volatile and intermediate volatility organic compounds and their contribution to organic aerosol [J]. Progress in Chemistry, 2019, 31(1): 180-190(in Chinese).
- [12] LI J, HAN Z W, LI J W, et al. The formation and evolution of secondary organic aerosol during haze events in Beijing in wintertime [J]. Science of the Total Environment, 2020, 703: 134937.
- [13] FANG H, HUANG X Q, ZHANG Y L, et al. Measurement report: Emissions of intermediate-volatility organic compounds from vehicles under real-world driving conditions in an urban tunnel [J]. Atmospheric Chemistry and Physics, 2021, 21(13): 10005-10013.
- [14] 马英歌, 孙谦, 李莉, 等. 热脱附结合GC-MS测定大气总悬浮颗粒物中的半挥发性有机物 [J]. 环境化学, 2017, 36(6): 1424-1427.
 MA Y G, SUN Q, LI L, et al. Determination of semi-volatile organic pollutants from atmospheric using thermal desorption system with gas chromatography-mass spectrometer [J]. Environmental Chemistry, 2017, 36(6): 1424-1427(in Chinese).
- [15] 解迎双,周围. 双燃料汽车与汽油车尾气中有机物成份对比分析 [J]. 科技导报, 2010, 28(6): 93-97.
 XIE Y S, ZHOU W. Comparative analysis of the organic composition in the exhaust fumes between dual fuel autombiles and gasoline vehicles [J]. Science & Technology Review, 2010, 28(6): 93-97(in Chinese).
- [16] JUNG S, MUN S, CHUNG T, et al. Emission characteristics of regulated and unregulated air pollutants from heavy duty diesel trucks and buses [J]. Aerosol and Air Quality Research, 2019, 19(2): 431-442.
- [17] PERRONE M G, CARBONE C, FAEDO D, et al. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from

vehicles coming within different European classes [J]. Atmospheric Environment, 2014, 82: 391-400.

[18] 陆思华, 白郁华, 张广山, 等. 机动车排放及汽油中VOCs成分谱特征的研究 [J]. 北京大学学报 (自然科学版), 2003, 39(4): 507-511.

LU S H, BAI Y H, ZHANG G S, et al. Study on the characteristics of VOCs source profiles of vehicle exhaust and gasoline emission [J]. Acta Scicentiarum Naturalium Universitatis Pekinensis, 2003, 39(4): 507-511(in Chinese).

- [19] 中华人民共和国环境保护部.环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法: HJ 646—2013 [S].北 京:中国环境科学出版社, 2013.
 Ministry of Environmental Protection of the People's Republic of China. Ambient air and stationary source emissions. Determination of gas and particle-phase polycyclic aromatic hydrocarbons with gas chromatography/mass spe: HJ 646—2013 [S]. Beijing: China Environment Science Press, 2013(in Chinese).
- [20] 中华人民共和国环境保护部.环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法: HJ 647—2013[S].北京:中国环境科学出版社, 2013.

Ministry of Environmental Protection of the People's Republic of China. Ambient air and stationary source emissions. Determination of gas and particle-phase polycyclic aromatic hydrocarbons. High performance liquid chromat: HJ 647—2013 [S]. Beijing: China Environment Science Press, 2013(in Chinese).

[21] 谭鑫, 袁斌, 王超敏, 等. 环境大气中半/中等挥发性有机物(S/IVOCs)的测量技术进展[J]. 中国环境科学, 2020, 40(10): 4224-4236.

TAN X, YUAN B, WANG C M, et al. Progress in measurements of semi-/ intermediate-volatile organic compounds in ambient air [J]. China Environmental Science, 2020, 40(10): 4224-4236(in Chinese).

- [22] U. S. Environmental Protection Agency. Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes (Method TO-17) [S]. Cincinnati: U. S. Environmental Protection Agency, 1999.
- [23] WANG M, HUANG R J, CAO J J, et al. Determination of n-alkanes, PAHs and hopanes in atmospheric aerosol: evaluation and comparison of thermal desorption GC-MS and solvent extraction GC-MS approaches [J]. Atmospheric Measurement Techniques, 2019, 12(9): 4779-4789.
- [24] 周文钦,李成,刘俊文,等.典型内燃叉车尾气挥发性有机物与正构烷烃的排放特征研究 [J].环境科学,2022,43(2):735-742.

ZHOU W Q, LI C, LIU J W, et al. Emission characteristics of VOCs and n-alkanes from diesel forklifts [J]. Environmental Science, 2022, 43(2): 735-742(in Chinese).

[25] 董瑞, 沈秀娥, 张琳, 等. 热脱附-GC/MS快速测定大气细颗粒物中支链烷烃和烷基环己烷 [J]. 质谱学报, 2018, 39(4): 433-441.

DONG R, SHEN X E, ZHANG L, et al. Determination of branched alkane and alkylcyclohexane in atmospheric fine particulate matter using rapid direct thermal desorption-GC/MS [J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(4): 433-441(in Chinese).

- [26] HO S S H, YU J Z. In-injection port thermal desorption and subsequent gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples [J]. Journal of Chromatography A, 2004, 1059(1/2): 121-129.
- [27] CACHIER H, BRÉMOND M P, BUAT-MÉNARD P. Thermal separation of soot carbon [J]. Aerosol Science and Technology, 1989, 10(2): 358-364.
- [28] 中华人民共和国生态环境部.环境监测分析方法标准制订技术导则: HJ 168—2020[S].北京:中国环境科学出版社, 2020. Ministry of Ecology and Environment of the People's Republic of China. Technical guideline for the development of environmental monitoring analytical method standards: HJ 168—2020[S]. Beijing: China Environment Science Press, 2020(in Chinese).
- [29] 李登科. 机动车排气中SVOCs及颗粒物中SOF成分分析[D]. 天津: 天津大学, 2012.
 LI D K. Research of composition of semi volatile organic compounds and SOF in particulate matter in vehicle exhaust[D]. Tianjin: Tianjin University, 2012(in Chinese).
- [30] SHAH S D, OGUNYOKU T A, MILLER J W, et al. On-road emission rates of PAH and n-alkane compounds from heavy-duty diesel vehicles [J]. Environmental Science & Technology, 2005, 39(14): 5276-5284.