DOI:10.7524/AJE.1673-5897.20170113003

姜瑢, 王美娥, 陈卫平. 环草隆与重金属复合污染对黄瓜及小麦的毒性效应评估[J]. 生态毒理学报, 2017, 12(3): 544-555 Jiang R, Wang M E, Chen W P. Joint toxicity assessment of siduron and heavy metals on cucumber and wheat seed germination and seedling growth [J].

Asian Journal of Ecotoxicology, 2017, 12(3): 544-555 (in Chinese)

环草隆与重金属复合污染对黄瓜及小麦的毒性效应 评估

姜瑢^{1,2},王美娥^{1,*},陈卫平¹

中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京 100085
 中国科学院大学,北京 100049

收稿日期:2017-01-13 录用日期:2017-04-12

摘要:为探究草坪除草剂与重金属复合污染对高等植物的生态毒性效应,以小麦与黄瓜为敏感受试植物,采用滤纸发芽试验 法,研究了典型草坪除草剂环草隆与4种重金属(Cu/Zn/Pb/Cd)单一及复合污染条件下,对2种植物种子萌发与幼苗生长的毒 性效应并进行评估。在此基础上采用评估因子法外推环草隆在土壤中的预测无效应浓度(PNEC_{soil})。结果表明,2种植物的根 长及小麦的芽长对环草隆与重金属非常敏感(*P*<0.01),且存在明显的剂量-效应关系。黄瓜根长对环草隆最敏感,根长半抑制 浓度(Rl_{so})为0.281 mg·L⁻¹。小麦根长对 Cu、Pb、Cd 比黄瓜根长更敏感。环草隆与重金属复合污染时,黄瓜根长表现得最为敏 感,可作为敏感生物标记物。环草隆与重金属复合污染对小麦及黄瓜根长抑制具有协同作用,并且随着重金属浓度的增大, 黄瓜和小麦根生长对环草隆的敏感性增加。环草隆与重金属复合污染对小麦及黄瓜根长如制具有协同作用,并且随着重金属浓度的增大, 黄瓜和小麦根生长对环草隆的敏感性增加。环草隆与重金属复合污染对小麦芽长的联合效应主要与重金属种类及其暴露浓 度有关。以黄瓜的根伸长抑制率为急性毒性终点,利用外推法计算得环草隆在土壤中的 PNEC_{soil}为 1.90 μg·kg⁻¹,远远低于环 草隆田间推荐使用量 1.5~9 mg·kg⁻¹。与重金属复合污染时,环草隆的 PNEC_{soil} 明显降低,导致其生态风险提高。上述研究结 果能够为草坪除草剂环草隆与重金属复合污染的生态风险评价提供数据支持。

关键词:环草隆;重金属;小麦;黄瓜;根伸长;毒性效应;复合污染

文章编号: 1673-5897(2017)3-544-12 中图分类号: X171.5 文献标识码: A

Joint Toxicity Assessment of Siduron and Heavy Metals on Cucumber and Wheat Seed Germination and Seedling Growth

Jiang Rong^{1,2}, Wang Meie^{1,*}, Chen Weiping¹

1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

2. University of China Academy of Sciences, Beijing 100049, China

Received 13 January 2017 accepted 12 April 2017

Abstract: In order to reveal the joint toxicity of typical lawn herbicide siduron and heavy metals on terrestrial plants, wheat and cucumber were exposed to single and combined treatment of siduron and four heavy metals. The germination rates, biomass and the elongation of root and shoot of tested plants were detected. The predicted no effect concentration (PNEC_{soil}) for siduron in soil was calculated using assessment factors. Results showed that si-

基金项目:国家自然科学基金面上项目(41271503)

作者简介:姜瑢(1989-),女,博士研究生,研究方向为土壤污染生态风险评价,E-mail: jrong15@163.com

^{*} 通讯作者(Corresponding author), E-mail: mewang@rcees.ac.cn

545

duron and heavy metals had significant single and joint effects on root elongation of both plants and shoot elongation of wheat (P<0.01). Apparent does-effect relationships were demonstrated. Cucumber was more sensitive to siduron than wheat. RI₅₀ of cucumber in root elongation was 0.281 mg·L⁻¹. Wheat was more sensitive to Cu, Cd, Pb than cucumber. When we combined siduron and those four heavy metals, cucumber root elongation was the most sensitive parameter, which thus could be selected as biomarker. Siduron and those four heavy metals had a synergic effects on the inhibition of wheat and cucumber root elongation. Compared to single treatment of siduron, root elongation of both plants were more sensitive to siduron with the addition of heavy metals. Joint toxicity of siduron and those four heavy metals to wheat shoot depended more on individual heavy metal and exposing concentration. PNEC of siduron in the soil (PNEC_{soil}) derived from the acute toxicity data of cucumber root elongation dose of 1.5-9 mg·kg⁻¹ siduron in field. When combined with heavy metals, the PNEC_{soil} of siduron significantly decreased, which may lead to increased ecological risk. Results presented in this study can provide basic data for ecological risk assessment of combined pollution of siduron and heavy metals.

Keywords: siduron; heavy metal; wheat; cucumber; root elongation; toxic effect; combined pollution

随着城市化和工业化进程的加快,在高强度工 业活动、大规模的工程建设、大量废弃物的排放和频 繁的交通运输等多种因素的综合作用下,城市土壤 遭受了剧烈影响,土壤质量明显退化,污染严重^[1]。 而作为城市人群集中的主要休闲娱乐活动场所,草坪 绿地的土壤污染问题显得尤为关键,也最为敏感^[2]。

重金属污染已经成为城市绿地土壤的重要特征 之一^[3-6]。前期对北京市城市土壤重金属污染的调 查研究结果表明,Cu、Zn、Pb、Cd为主要重金属污染 物^[7],其中市中心公园以及建成百年的古典公园土 壤中重金属 Cu 与 Pb 最高浓度达到 457.5、207.5 mg ·kg^{-1[8-9]}。天津、西安等北方较发达城市土壤也出现 明显的重金属污染,其中主要污染元素也是 Cu、Zn、 Pb、Cd^[10-11]。沈阳和长春等北方工业城市表层土壤 中 Cu、Zn、Pb、Cd等元素的富集更为明显,最高浓度 达到 437.3、1 107、377.5、11.04 mg·kg^{-1[12-13]}。

由于国内城市绿地的管理缺乏相应的规范和标准,近年来,随着城市草坪绿地面积与日俱增,在养 护过程中大量化肥农药的使用,对大气、水体和土壤 产生的农药面源污染问题日显突出^[14-17],却没有引 起足够的重视。环草隆是北方城市应用较为广泛的 一种典型草坪除草剂,对草坪种子的萌发无不良影 响,可有效地控制狗尾草、止血马唐、毛雀麦和稗草 等杂草。由于环草隆性质相对稳定,在水体及土壤 中半衰期较长,而且移动性高,易随水迁移,尤其是 雨水径流^[18],近年来环草隆在水体中时有检出^[19-20]。 Whittemore 等^[21]在美国堪萨斯州城市住宅区低凹水 坑中检测到环草隆,Chau等^[22]在越南多个城市地表 水中检测到环草隆,且浓度最高达到 1 µg·L⁻¹,Kong 等^[23]对天津市 20 个地表水样进行监测,发现 20 个水 样均含有环草隆,最高浓度为 0.21 µg·L⁻¹,这说明环 草隆在城市绿地中的使用相当广泛。因此,在北方城 市土壤中重金属和除草剂复合污染普遍存在。

城市土壤(尤其草坪土壤)生态风险评估是保护 和维持健康的土壤环境和生态功能的重要步骤。当 今对化学品污染的生态风险评估方法大多基于单一 污染物的毒性数据,然而,随着越来越多的科学家意 识到土壤复合污染的普遍性,发展复合污染生态风 险评估方法逐渐引起了关注。此外,有研究表明,已 经受到了某些胁迫的生态系统(如旱涝、污染等)对 外界不良环境的响应明显不同于正常生态系统^[24]。 因此,本研究选择城市土壤中普遍存在的4种重金 属污染物(Cu/Zn/Pb/Cd)与北方草坪常用除草剂环草 隆为研究污染物,研究两者复合污染下对高等植物的 生态毒性效应,旨在筛选敏感生物标记物,并通过建 立敏感生物标记物与污染物浓度之间的剂量-效应关 系,推算预测无效应浓度(PNEC),为城市重金属污染

1 材料与方法(Materials and methods)

1.1 供试材料

供试小麦品种为轮选 987,黄瓜品种为中农 8 号,供种单位为中国农业科学院。环草隆为 48.5% 可湿性粉剂,其他试剂为分析纯。

1.2 试验设计与方法

1.2.1 预实验

铺二层滤纸于直径9 cm 烧杯中,将消毒后的黄

瓜和小麦种子均匀摆放于烧杯中滤纸上,每个烧杯 20 粒。分别向烧杯中加入 5 mL 不同几何级数浓度 的环草隆、Cu²⁺、Zn²⁺、Pb²⁺、Cd²⁺的污染物溶液,封口 后,放在(25±1) ℃的培养箱中,黑暗下培养。当对 照根芽长大于 20 mm 时,培养结束,分别计算各个 处理的发芽率、芽长、根长、幼苗鲜重及干重,发芽的 标准为芽长大于等于 3 mm,每个处理设 3 个重复。 1.2.2 单效应实验

根据预实验结果,在种子发芽和根伸长抑制浓 度达到抑制率20%~80%范围内,设置不同处理浓 度(见表1),在与预试验相同条件下,进行种子发芽 与幼苗生长培养试验,实验结束时,测定各处理浓度 的种子发芽率和根长、芽长、幼苗鲜重及干重。

1.2.3 复合污染实验

根据单效应实验结果,环草隆的实验浓度分别 对应于单效应实验根长抑制率的 0%、25%、30%、 40%、50%、60%,重金属的实验浓度对应于单效应 实验根长抑制率的 0%、20%、60%,对小麦及黄瓜的 复合污染试验处理浓度见表2。

1.3 统计分析

所有试验数据采用 SPSS13.0 和 Excel 等进行处理,测量数据进行单因子及双因子方差分析,绘图软件为 Sigma plot 18.0。

抑制率按下式计算:

抑制率 =(对照 - 处理)/ 对照 × 100% (1)

采用评估因子法^[25],对 PNEC 进行外推,即用最 敏感生物的毒性数据除以适当的评价因子(AF)即得 到 PNEC(见公式 2)。本实验用 PNEC 评价环草隆与 重金属溶液对黄瓜及小麦的生态毒理效应。由于环 境中有机污染物在土壤与水相之间存在平衡作用, 考虑到污染物在土壤中的生物有效性,因此通过平衡 分配方法(equilibrium partitioning method, EPM)^[26], 可以将土壤中污染物的浓度转化为孔隙水中的浓 度,那么污染物在孔隙水中的浓度即可采用水体的 PNEC 值进行生态风险评价。土壤中环草隆的无效 应浓度(PNEC_{soil})可以按照公式(3)进行推导。

Table 1	Single treatm	ent concentration	of siduron	and heav	v metals to	o wheat and	cucumber
	0				2		

			小麦	Wheat				黄瓜 Cucumber					
环草隆 Siduron/(mg·L ⁻¹)	0	10	20	30	50	70	0	0.1	0.2	0.4 0.5	0.7	1	
$Cd^{2+}/(mg \cdot L^{-1})$	0	10	20	30	40	50	0	10	20	30	40	50	
$Cu^{2+}/(mg \cdot L^{-1})$	0	2.5	5	10	20	50	0	5	10	20	40	80	
$Zn^{2+}/(mg \cdot L^{-1})$	0	50	100	200	300	400	0	40	80	120	200	300	
$Pb^{2+}/(mg \cdot L^{-1})$	0	100	200	400	800	1 000	0	100	200	300	400	500	

表 2 环草隆与重金属对黄瓜和小麦复合污染试验处理浓度

Table 2 Experiment design and combined treatment concentration of siduron

and heavy metals to wheat and cucumber

小麦 Wheat								黄瓜 Cucumber				
环草隆 Siduron/(mg·L ⁻¹)	0	10	15	30	45	60	0	0.1	0.15	0.2	0.35	0.55
	0	WT1	WT2	WT3	WT4	WT5	0	CT1	CT2	CT3	CT4	CT5
$C^{12+}((-, -, -, -, -, -, -, -, -, -, -, -, -, -$	10	WT6	WT7	WT8	WT9	WT10	10	CT6	CT7	CT8	CT9	CT10
$Cd^{-}/(mg \cdot L^{-})$	25	WT11	WT12	WT13	WT14	WT15	40	CT11	CT12	CT13	CT14	CT15
C^{2+} (T^{-1})	2	WT16	WT17	WT18	WT19	WT20	6	CT16	CT17	CT18	CT19	CT20
$Cu^{-}/(mg \cdot L^{-})$	20	WT21	WT22	WT23	WT24	WT25	20	CT21	CT22	CT23	CT24	CT25
7^{2+1}	150	WT26	WT27	WT28	WT29	WT30	40	CT26	CT27	CT28	CT29	CT30
$Zn^{2}/(mg \cdot L^{2})$	450	WT31	WT32	WT33	WT34	WT35	120	CT31	CT32	CT33	CT34	CT35
p_1^{2+} (($r_1^{-1})$	60	WT36	WT37	WT38	WT39	WT40	90	CT36	CT37	CT38	CT39	CT40
PD /(mg·L ⁻)	300	WT41	WT42	WT43	WT44	WT45	320	CT41	CT42	CT43	CT44	CT45

注:WT 为小麦复合污染实验处理,CT 为黄瓜复合污染实验处理。

Note: WT means the treatment of combined pollution of wheat, CT means the treatment of combined pollution of cucumber.

(2)

式中:EC50选择根长半抑制浓度;

$$PNEC_{soil} = \frac{K_{soil-water}}{RHO_{soil}} \times PNEC_{water} \times 1000$$
(3)

式中: $K_{\text{soil-water}}$ 为环草隆在土壤和水中分配系数 (m³·m⁻³), RHO_{soil}为土壤容重(kg·m⁻³);

$$K_{\text{soil-water}} = \text{FC}_{\text{water}} + \text{FC}_{\text{solid soil}} \times \frac{K_{\text{psoil}}}{1000}$$

式中:FC_{water}为田间持水量(%), $F_{solid soil}$ 为土壤中 固体颗粒的含量(%), K_{psoil} 为环草隆在土壤中固-水 分配系数(L·kg⁻¹),RHO_{solid}为土壤密度(kg·m⁻³);

$$K_{\rm psoil} = K_{\rm oc} \times f_{\rm oc} \tag{5}$$

式中: K_{oc}为环草隆在土壤中的有机碳分配系数, f_{oc}为土壤有机碳含量(%)。

根据文献中数据,环草隆在土壤中的有机碳分 配系数(K_{∞})一般为 330~420^[27-28],取平均值 375,北 京市公园绿地土壤偏砂,容重约为 1.39 g·cm⁻³,田间 持水量约为 35%,有机碳含量平均约为 1.4%^[29-31], 土壤密度统一为 2.65 g·cm⁻³。

2 结果与分析(Results and analysis)

2.1 环草隆与重金属单一、复合污染对黄瓜和小麦 种子萌发及幼苗生长影响的方差分析

环草隆和重金属单一、复合污染对黄瓜和小麦 种子发芽及幼苗生长的抑制效应的方差分析发现 (见表 3),在本试验浓度范围内(黄瓜 0.1~1 mg·L⁻¹; 小麦 0~70 mg·L⁻¹),环草隆对黄瓜和小麦种子萌发 及幼苗生物量无明显影响(P>0.05),但是显著抑制了 幼苗根长及芽长(P<0.01)。重金属 Cu 和 Pb 对黄瓜 的发芽率、根和芽伸长的效应均为显著(P<0.01),而 重金属 Zn 和 Cd 对黄瓜的发芽率和幼苗生物量没 有显著效应,对根和芽伸长有显著的效应(P<0.01)。 对小麦的试验结果表明,只有 Pb 对小麦发芽率和 幼苗干重有显著的效应(P<0.01);其他 3 种重金属对 发芽率及幼苗生物量的效应不显著;与对黄瓜发芽 试验类似,4 种重金属对小麦的根长和芽长都表现 为显著的效应(P<0.01)。

环草隆与4种重金属复合污染的联合效应的分析结果表明,除了环草隆与Cu复合污染对黄瓜的发芽率有显著效应以外(P<0.01),环草隆与其他重金属复合污染对黄瓜与小麦种子发芽率及幼苗干重的联合效应均不显著(P>0.05),而对根长和芽长的联合效应显著(P<0.01)(表3)。

以上结果表明,环草隆与重金属单一及复合 污染胁迫对 2 种受试植物根长、芽长都有显著的 影响,并且对黄瓜和小麦幼苗生长的效应较种子 发芽更明显,这是因为种子发芽过程除了受外界 污染物含量及有效性的影响外,主要还受胚内养 分供应的影响^[32]。

2.2 环草隆处理浓度与小麦及黄瓜幼苗生长的剂量-效应关系

如图1所示,小麦根长和芽长抑制率与环草隆

表 3	环草隆与重金属单一	复合污染对黄瓜和小麦种子萌发及幼苗生长情况的方差分析
-----	-----------	----------------------------

Table 3	Variance analysis of single and joint effect of siduron and heavy metals to cucumber
	and wheat seed germination and seedling growth

	黄瓜 C	ucumber			小麦	Wheat	
发芽率	根长	芽长	工委	发芽率	根长	芽长	工委
Germination	Root	Shoot	里	Germination	Root	Shoot	里
rate	elongation	elongation	Dry weight	rate	elongation	elongation	Dry weight
0.771	0.000**	0.000* *	0.604	0.206	0.000* *	0.000* *	0.694
0.004**	0.000**	0.000**	0.007**	0.088	0.000**	0.000**	0.158
0.558	0.000**	0.000**	0.325	0.964	0.000**	0.000**	0.687
0.005**	0.000^{*} *	0.004**	0.269	0.000**	0.000^{*} *	0.000**	0.014^{*}
0.993	0.000**	0.005* *	0.048^*	0.668	0.000**	0.000**	0.547
0.852	0.000^{*} *	0.000**	0.344	0.272	0.000^{*} *	0.007^{*} *	0.872
0.024*	0.000^{*} *	0.000**	0.137	0.394	0.000**	0.000**	0.272
0.450	0.000^{*} *	0.000**	0.080	0.831	0.000^{*} *	0.000**	0.043
0.071	0.000**	0.000**	0.100	0.356	0.000**	0.000**	0.384
	发芽率 Germination rate 0.771 0.004** 0.558 0.005** 0.993 0.852 0.024* 0.450 0.071	黄瓜 C 发芽率 根长 Germination Root rate elongation 0.771 0.000** 0.004** 0.000** 0.558 0.000** 0.993 0.000** 0.852 0.000** 0.024* 0.000** 0.450 0.000** 0.071 0.000**	黄瓜 Cucumber 发芽率 根长 芽长 Germination Root Shoot rate elongation elongation 0.771 0.000** 0.000** 0.004** 0.000** 0.000** 0.558 0.000** 0.000** 0.993 0.000** 0.005** 0.852 0.000** 0.000** 0.024* 0.000** 0.000** 0.450 0.000** 0.000** 0.071 0.000** 0.000**	黄瓜 Cucumber 发芽率 根长 芽长 干重 Germination Root Shoot Dry weight rate elongation elongation 0.000** 0.604 0.771 0.000** 0.000** 0.007** 0.558 0.000** 0.000** 0.325 0.005** 0.000** 0.004** 0.269 0.993 0.000** 0.005** 0.048* 0.852 0.000** 0.000** 0.344 0.024* 0.000** 0.000** 0.137 0.450 0.000** 0.000** 0.080 0.071 0.000** 0.000** 0.100	黄瓜 Cucumber 发芽率 根长 芽长 千重 发芽率 人人子率 日本 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>黄瓜 Cucumber小麦发芽率根长芽长GerminationRootShootrateelongationelongation$0.771$$0.000^{**}$$0.000^{**}$$0.004^{**}$$0.000^{**}$$0.604$$0.206$$0.004^{**}$$0.000^{**}$$0.007^{**}$$0.007^{**}$$0.004^{**}$$0.000^{**}$$0.007^{**}$$0.0088$$0.005^{**}$$0.000^{**}$$0.007^{**}$$0.0088$$0.005^{**}$$0.000^{**}$$0.007^{**}$$0.000^{**}$$0.993$$0.000^{**}$$0.005^{**}$$0.048^{*}$$0.668$$0.852$$0.000^{**}$$0.000^{**}$$0.344$$0.272$$0.024^{*}$$0.000^{**}$$0.137$$0.394$$0.007^{**}$$0.450$$0.000^{**}$$0.000^{**}$$0.131$$0.000^{**}$$0.071$$0.000^{**}$$0.000^{**}$$0.100$$0.356$$0.000^{**}$</td><td>黄瓜 Cucumber 小麦 Wheat 发芽率 根长 芽长 千重 发芽率 根长 芽长 Germination Root Shoot Trg Germination Root Shoot Teg Germination Root Shoot Teg Germination Root Shoot $Tate$ $elongation$ $elongation$ $elongation$ 0.000^{**} 0.604 0.206 0.000^{**} 0.000^{**} 0.004^{**} 0.000^{**} 0.007^{**} 0.007^{**} 0.088 0.000^{**} 0.000^{**} 0.004^{**} 0.000^{**} 0.007^{**} 0.088 0.000^{**} 0.000^{**} 0.005^{**} 0.000^{**} 0.007^{**} 0.088 0.000^{**} 0.000^{**} 0.005^{**} 0.000^{**} 0.007^{**} 0.000^{**} 0.000^{**} 0.000^{**} 0.993 0.000^{**} 0.005^{**} 0.048^{*} 0.668 0.000^{**} 0.000^{**} 0.852 0.000^{**} 0.000^{**} 0.137 0.394</td></t<>	黄瓜 Cucumber小麦发芽率根长芽长GerminationRootShootrateelongationelongation 0.771 0.000^{**} 0.000^{**} 0.004^{**} 0.000^{**} 0.604 0.206 0.004^{**} 0.000^{**} 0.007^{**} 0.007^{**} 0.004^{**} 0.000^{**} 0.007^{**} 0.0088 0.005^{**} 0.000^{**} 0.007^{**} 0.0088 0.005^{**} 0.000^{**} 0.007^{**} 0.000^{**} 0.993 0.000^{**} 0.005^{**} 0.048^{*} 0.668 0.852 0.000^{**} 0.000^{**} 0.344 0.272 0.024^{*} 0.000^{**} 0.137 0.394 0.007^{**} 0.450 0.000^{**} 0.000^{**} 0.131 0.000^{**} 0.071 0.000^{**} 0.000^{**} 0.100 0.356 0.000^{**}	黄瓜 Cucumber 小麦 Wheat 发芽率 根长 芽长 千重 发芽率 根长 芽长 Germination Root Shoot Trg Germination Root Shoot Teg Germination Root Shoot Teg Germination Root Shoot $Tate$ $elongation$ $elongation$ $elongation$ 0.000^{**} 0.604 0.206 0.000^{**} 0.000^{**} 0.004^{**} 0.000^{**} 0.007^{**} 0.007^{**} 0.088 0.000^{**} 0.000^{**} 0.004^{**} 0.000^{**} 0.007^{**} 0.088 0.000^{**} 0.000^{**} 0.005^{**} 0.000^{**} 0.007^{**} 0.088 0.000^{**} 0.000^{**} 0.005^{**} 0.000^{**} 0.007^{**} 0.000^{**} 0.000^{**} 0.000^{**} 0.993 0.000^{**} 0.005^{**} 0.048^{*} 0.668 0.000^{**} 0.000^{**} 0.852 0.000^{**} 0.000^{**} 0.137 0.394

注:*** P<0.01,* P<0.05 表示不同处理浓度间有显著差异。

Note: ** , * stand for significant differences in different concertration treatments at P=0.01 and 0.05 level respectively.

浓度成显著线性正相关,回归方程分别为 RI_{sid} = 0.671 X+19.8(P<0.01), SI_{sid} = 0.793 X-4.71(P<0.01), 根据回归方程计算得到,环草隆对小麦根长、芽长的半抑制浓度分别为 45.0 和 69.0 mg·L⁻¹, 小麦根长比芽长对环草隆胁迫更为敏感。

黄瓜芽长抑制率与环草隆浓度之间没有显著的 剂量-效应关系(P>0.05),而黄瓜根长抑制率与环草 隆浓度表现为显著的对数相关关系(图 2),回归方程 为 RI_{sid}=21.6lnX+77.4(P<0.01),环草隆对黄瓜根长 的半抑制浓度为 0.281 mg·L⁻¹。

以上结果表明,黄瓜根长抑制率对环草隆的敏感 性较高,是小麦幼苗芽长及根长的150倍以上。这是 因为环草隆本身针对多数一年生阔叶杂草,尤其是对 小粒种子的阔叶杂草效果卓著,黄瓜属于双子叶植物 而且种子细小,因此黄瓜根长对环草隆非常敏感。

Fig. 2 Effect of siduron on the root and shoot elongation of cucumber

根据美国 EPA 关于环草隆的登记资料中的数据,环草隆对双子叶植物大豆和单子叶植物洋葱的无可见有害作用水平(NOAEL)分别为0.143 mg·kg⁻¹和1.13 mg·kg^{-1[33]},与本研究结果相似。环草隆属于苯脲类除草剂,Song 等^[34]的研究表明,绿麦隆对小麦幼苗的生长有明显抑制作用,在5~25 mg·L⁻¹浓度范围内,幼苗根长、芽长及鲜重受到明显抑制,而且根部受到抑制作用更明显;Yin 等^[35]研究了异丙隆对小麦的毒性效应,结果表明在3.5~20 mg·kg⁻¹浓度下,异丙隆对小麦的根长也产生明显抑制作用。

2.3 重金属处理浓度与黄瓜及小麦幼苗生长的剂 量-效应关系

根据方差分析结果(表 3),对重金属 Cu 和 Pb 处 理浓度与黄瓜的发芽率、根长、芽长、及其幼苗干物 质量,以及 Zn 和 Cd 处理浓度与黄瓜根长芽长进行 了剂量-效应分析;同时对重金属 Cu、Zn、Cd 与小麦 根长、芽长以及 Pb 与小麦发芽率、根长、芽长以及 幼苗干物质进行了剂量-效应关系分析。结果表明, 只有黄瓜根长及小麦根长和芽长与重金属浓度之间 有显著的剂量-效应关系。重金属 Zn 处理浓度与小 麦根长及芽长抑制率呈显著的线性正相关关系(P< 0.01),其余重金属处理浓度与 2 种植物根伸长抑制 率和小麦芽伸长抑制率呈显著的对数正相关(P < 0.01),回归方程见表 4。

如表 4 所示,从半抑制效应浓度 EC₅₀可以看出,除 Zn 外,Cu、Pb、Cd 3 种重金属对小麦根伸长的 半抑制浓度(RI₅₀)都小于芽伸长的半抑制浓度(SI₅₀), 因此小麦根长比芽长对重金属胁迫更为敏感。与小 麦相比,Zn 对黄瓜根长的半抑制浓度(89.0 mg·L⁻¹) 明显低于小麦根长半抑制浓度(382 mg·L⁻¹),说明黄 瓜根长对 Zn 的敏感性比小麦高;而 Cu、Pb、Cd 3 种 重金属对小麦根伸长的半抑制浓度都小于黄瓜的根 长半抑制浓度,说明小麦根长对 Cu、Pb、Cd 的敏感 性比黄瓜更高。

因此, Zn 的敏感生物标记物是黄瓜根长, 而 Cu、Pb、Cd 的敏感生物标记物是小麦根长。大部分 研究结果表明重金属污染胁迫对种子萌发影响较 小,但对植物根伸长抑制效应显著, 与本实验研究结 果一致^[36-38]。

2.4 环草隆-重金属复合处理与小麦幼苗生长的剂 量-效应关系

在环草隆与 Cu、Zn、Pb、Cd 这 4 种不同浓度重金 属复合污染条件下,根据方差分析结果(表 3),对环草 隆处理浓度与小麦的根长、芽长进行了剂量-效应分析。结果表明当重金属浓度一定时,小麦根长、芽长抑制率与环草隆浓度之间存在显著的剂量-效应关系

(P<0.01)。如图 2 所示,当重金属浓度一定时,随着环 草隆浓度升高,小麦根长抑制率增大,呈显著的线性 正相关关系,回归方程及半抑制效应浓度见表 5。

Fig. 3 Joint toxicity effect of siduron and heavy metals on the root elongation of wheat

表 4 黄瓜与小麦根长及芽长抑制率与重金属离子浓度(X)的相关性

and concentration of added heavy metals (X)

		回归方程 Regression equation	R^2	Р	$RI_{50}/(mg \cdot L^{-1})$	$SI_{50}/(mg \cdot L^{-1})$
	黄瓜 Cucumber	$RI_{Cd}^{2+} = 38.6 \ln X - 74.8$	0.984	< 0.01	25.4	
Cd^{2^+}	小丰 Wheat	$RI_{Cd}^{2+} = 31.7 \ln X - 38.1$	0.888	< 0.01	16.1	24.2
	小麦 wheat	$SI_{Cd}^{2+} = 26.9 \ln X - 35.8$	0.951	< 0.01	10.1	24.2
黄瓜 Cucumber Cu ²⁺ 小麦 Wheat	$RI_{Cu}^{2+} = 31.6 \ln X - 37.3$	0.939	< 0.01	15.8		
	小麦 Wheat	$RI_{Cu}^{2+} = 17.8 \ln X + 4.87$	0.943	< 0.01	12.6	25.6
		$SI_{Cu}^{2+} = 12.6 \ln X + 9.26$	0.916	< 0.01	12.6	25.6
	黄瓜 Cucumber	$RI_{Zn}^{2+} = 35.7 \ln X - 110$	0.999	< 0.01	89.0	
Zn^{2+}	.l = 117	$RI_{Zn}^{2+} = 0.141 X - 3.88$	0.986 <0.01		282	262
	小友 Wheat	$SI_{Zn}^{2+} = 0.123X + 5.48$	0.906	< 0.01	382	362
	黄瓜 Cucumber	$RI_{Pb}^{2+} = 37.5 \ln X - 155$	0.910	< 0.01	238	
Pb^{2+}	.l = 117	$RI_{Pb}^{2+} = 23.7 \ln X - 78.0$	0.988	< 0.01	220	546
	小麦 Wheat	$SI_{Pb}^{2+} = 18.1 \ln X - 63.9$	0.961	< 0.01	220	546

注:P<0.01 表示可决系数显著水平为0.01,下同。

Note: P < 0.01 stands for markedly positive relationships at P = 0.01 level, the same below.

Table 4 Relationships between inhibition rate of root elongation (RI) and shoot elongation (SI)

根据表 5 可以看出,与单一环草隆污染相比,环 草隆与重金属复合污染对小麦根长的半抑制效应浓 度明显降低,对小麦根长抑制具有一定协同作用。 随着 Cd 浓度的增大,半抑制效应浓度降低,协同作 用增强。在与高浓度的 Cu(20 mg·L⁻¹)、Zn(450 mg· L⁻¹)、Pb(300 mg·L⁻¹)复合污染时,所有环草隆处理浓 度下,小麦根长的抑制率都大于 50%,说明随着重 金属浓度的升高,小麦根长对环草隆更加敏感。

如图 4 所示,当重金属浓度一定时,小麦芽长抑 制率与环草隆浓度呈显著线性回归关系,回归方程 及计算得到的半抑制浓度见表 6。根据表 6 可以看 出4种重金属与环草隆复合污染对小麦芽长的半抑 制效应浓度均大于根长的半抑制效应浓度,因此,环 草隆与重金属复合污染条件下,小麦的根长相对比 芽长更敏感。与单一环草隆污染相比,Cu和环草隆 复合污染对小麦芽长的半抑制浓度都升高,表现为 拮抗作用;Zn和环草隆复合污染时,对小麦的芽长 半抑制浓度都降低,具有明显的协同作用;高浓度的 Cd(25 mg·L⁻¹)和 Pb(300 mg·L⁻¹)与环草隆复合污染 时,小麦芽长半抑制浓度降低,表现为协同作用,而 低浓度的 Cd(10 mg·L⁻¹)和 Pb(60 mg·L⁻¹)与环草隆 复合污染时,小麦芽长半抑制浓度升高,表现出拮抗 作用,这可能是因为环草隆与 Cu 及低浓度的 Cd 和 Pb 发生络合作用,在短时间内会阻止污染物进一步 进入植物体内,由此产生拮抗作用。

2.5 环草隆-重金属复合处理与黄瓜幼苗生长的剂 量-效应关系

与小麦的发芽实验类似,分析了在环草隆与

Cu、Zn、Pb、Cd 4 种不同浓度重金属复合污染条件下,环草隆处理浓度与黄瓜的根长、芽长的剂量-效应关系。结果表明当重金属浓度一定时,黄瓜芽长与环草隆浓度之间没有明显的剂量-效应关系,黄瓜根长抑制率与环草隆浓度呈显著的对数正相关(图5),回归方程及半抑制效应浓度见表7。

根据表7,环草隆与重金属复合污染时,对黄瓜 根长的半抑制效应浓度也明显降低,说明环草隆与 重金属复合污染对黄瓜根长抑制也具有一定协同作 用,并且随着 Zn、Pb 浓度的增大,半抑制效应浓度 降低,协同作用增强。而在与高浓度的 Cd (40 mg· L⁻¹)、Cu (40 mg·L⁻¹)复合污染时,在所有环草隆处理 浓度下,黄瓜根长的抑制率都大于 50%,黄瓜根长 对环草隆的敏感性增加。

比较黄瓜与小麦的根长半抑制浓度(表 5 和 7), 发现环草隆与重金属复合污染对黄瓜及小麦根长抑 制均表现出协同作用,但黄瓜根长对环草隆与重金 属复合污染的胁迫比小麦更加敏感,而且随着重金 属浓度的增加,黄瓜和小麦根生长对环草隆的敏感 性都增加;环草隆与重金属复合污染的对小麦芽长 生长联合效应主要与重金属种类及其暴露浓度有直 接关系,这与其他学者获得的有机物与重金属复合 污染对植物生态毒性效应的研究结果相似^[39-40]。符 博敏等^[41]的研究也表明恩诺沙星与 Cu 复合污染对 小白菜和西红柿根和芽伸长表现出明显的协同作 用,金彩霞等^[42]研究磺胺嘧啶与重金属铜复合污染 对小白菜和西红柿根和芽伸长的联合作用与暴露浓 度有直接关系。

表 5	不同重金属处理下小麦幼苗根长抑制率(RI)与环草隆浓度(X)的相关性
Table 5	Relationships between inhibition rate of wheat root elongation (RI)
	and accountertien of added sideway (X)

ć	and	concentration	01	added	siduron	(X)	

		回归方程 Regression quation	R^2	Р	$RI_{50}/(mg \cdot L^{-1})$
0		$RI_{sid} = 0.793 X + 26.5$	0.964	< 0.01	29.6
$C 1^{2+} / (-1)$	10	$RI_{sid+Cd10} = 0.760X + 33.1$	0.900	< 0.01	22.8
	25	$RI_{sid+Cd25} = 0.567X + 46.6$	0.964	< 0.01	6.01
$C_{12}^{2+}/(m_{12} - 1)$	2	$RI_{sid+Cu2} = 0.645 X + 40.7$	0.979	< 0.01	14.5
$Cu^{-}/(mg \cdot L^{-})$	20	$RI_{sid+Cu20} = 0.231X+69.0$	0.917	< 0.01	_
7 ²⁺ <i>u</i> 1 -1	150	$RI_{sid+Zn150} = 0.776X + 36.7$	0.944	< 0.01	17.1
$\operatorname{Zn}^{2+}/(\operatorname{mg} \cdot \operatorname{L}^{-1})$	450	$RI_{sid+Zn250} = 0.428X + 57.3$	0.913	< 0.01	_
	60	$RI_{sid+Pb60} = 0.629X + 36.3$	0.870	< 0.01	21.8
PD ⁻ /(mg·L ⁻)	300	$RI_{sid+Pb300} = 0.308X + 65.3$	0.945	<0.01	_

注:一表示当前重金属浓度下,在任何环草隆浓度下根长抑制率大于50%。

Note: - denotes that when the added concentration of copper, zinc, lead were 20, 450, 300 mg \cdot L⁻¹ respectively, the inhibition rate of root elongation was always higher than 50% at any concentration of siduron.

2.6 环草隆与重金属单一、复合污染在土壤中对高等植物的毒性浓度 PNEC

通过比较黄瓜和小麦发芽和幼苗生长的毒性数 据可知,对环草隆较为敏感的生物标记物为黄瓜根 长抑制率,EC₅₀值为 0.281 mg·L⁻¹。由此为毒性终 点进行推导,利用外推法计算得环草隆在土壤中对 高等植物的 PNEC,结果见表 8。环草隆对高等植物 的 PNEC_{soil}为 1.90 μg·kg⁻¹,远远低于环草隆的普通 推荐使用量 1.5~9 mg·kg⁻¹,尤其是在高尔夫球场成 坪草坪上环草隆的使用量高达 32.3 mg·kg⁻¹,且每 年喷施次数多达 6 次^[33]。环草隆对高等植物黄瓜存 在较大的急性毒性风险。由于环草隆使用时,在土 壤中移动性较高,易随水迁移,因此可能会对城市周 边农田带来一定的生态风险,不容忽视。

表 6 不同重金属处理下小麦幼苗芽长抑制率(SI)与环草隆浓度(X)的相关性

Table 6	Relationships	between	inhibition	rate of	wheat	shoot	elongation	(SI)	and	concentration	of	added	siduron	(X)
---------	---------------	---------	------------	---------	-------	-------	------------	------	-----	---------------	----	-------	---------	-----

		回归方程 Regression equation	R^2	Р	$SI_{50}/(mg \cdot L^{-1})$
0		SI _{sid} =0.929 <i>X</i> +7.34	0.922	< 0.01	45.9
$Cd^{2+}/(mg \cdot L^{-1})$	10	$SI_{sid+Cd10} = 1.025 X + 1.67$	0.924	< 0.01	47.2
	25	$SI_{sid+Cd25} = 0.724X + 25.2$	0.972	< 0.01	34.3
$\operatorname{Cu}^{2+}/(\operatorname{mg} \cdot \operatorname{L}^{-1})$	2	$SI_{sid+Cu2} = 0.945X + 4.69$	0.992	< 0.01	48.0
	20	$SI_{sid+Cu20} = 0.357X + 24.9$	0.707	< 0.01	70.3
$Zn^{2+}/(mg \cdot L^{-1})$	150	$SI_{sid+Zn150} = 1.083 X + 6.81$	0.922	< 0.01	39.9
	450	$SI_{sid+Zn250} = 0.584 X + 40.6$	0.736	< 0.01	16.0
$Pb^{2+}/(mg \cdot L^{-1})$	60	SI _{sid+Pb60} = 0.667 <i>X</i> +15.6	0.931	< 0.01	51.5
	300	$SI_{sid+Pb300} = 0.555X + 25.0$	0.932	< 0.01	45.1

Fig. 5 Joint toxicity effect of siduron and heavy metals on the root elongation of cucumber

表 7 不同重金属浓度下黄瓜幼苗根长抑制率(RI)与环草隆浓度(X)的相关性

Table 7Relationships between inhibition rate of cucumber root elongation (RI)and concentration of added siduron (X)

		回归方程 Regression equation	R^2	Р	$RI_{50}/(mg \cdot L^{-1})$
0		$RI_{sid} = 21.6 ln X + 77.4$	0.987	< 0.01	0.281
$Cd^{2+}/(mg \cdot L^{-1})$	10	$RI_{sid+Cd10} = 16.5 ln X + 78.7$	0.948	< 0.01	0.175
	40	$RI_{sid+Cd40} = 2.73 ln X + 84.7$	0.703	0.01	_
$Cu^{2+}/(mg \cdot L^{-1})$	6	$RI_{sid+Cu6} = 24.9 \ln X + 88.9$	0.973	< 0.01	0.210
	20	$RI_{sid+Cu20} = 4.63 ln X + 86.8$	0.979	< 0.01	_
$Zn^{2+}/(mg \cdot L^{-1})$	40	$RI_{sid+Zn40} = 24.0 ln X + 85.2$	0.984	< 0.01	0.231
	120	$RI_{sid+Zn120} = 6.84 ln X + 84.9$	0.939	< 0.01	0.006
$Pb^{2+}/(mg \cdot L^{-1})$	90	$RI_{sid+Pb90} = 19.6 \ln X + 82.0$	0.976	< 0.01	0.195
	320	$RI_{sid+Pb320} = 11.6 ln X + 81.7$	0.999	< 0.01	0.065

注:一表示当前重金属浓度下,在任何环草隆浓度下根长抑制率大于50%。

Note: - denotes that when the added concentration of cadmium, copper were 40, 20 mg \cdot L⁻¹ respectively, the inhibition rate of root elongation was always higher than 50% at any concentration of siduron.

表 8	推导环草隆预测无效应浓度的急性毒性数据

Table 8 Acute toxicity date used to estimate PNEC of sidu	iron
---	------

	黄瓜 Cucumber		
	$EC_{50}/(mg \cdot L^{-1})$	$PNEC_{water}/(\mu g \cdot L^{-1})$	$PNEC_{soil}/(\mu g \cdot kg^{-1})$
环草隆(sid)	0.281	0.281	1.90
Sid×Cu	0.210	0.210	1.42
Sid×Zn	0.231	0.231	1.56
Sid×Pb	0.195	0.195	1.32
Sid×Cd	0.175	0.175	1.18

与重金属 Cu(6 mg·L⁻¹)、Zn(40 mg·L⁻¹)、Pb(90 mg·L⁻¹)、Cd(10 mg·L⁻¹)复合污染下,环草隆在土壤中的 PNEC_{soil}值分别降低 25.3%、17.8%、30.6% 和 37.8%,环草隆在土壤中的安全阈值降低,污染可能导致的风险将大大提高。而与更高浓的 Cu(20 mg·L⁻¹)、Zn(120 mg·L⁻¹)、Pb(300 mg·L⁻¹)、Cd(40 mg·L⁻¹)复合污染下,由于环草隆的 EC_{so}值接近 0 或者不存在,无法计算在土壤中的 PNEC 值。

综上所述:

本文采用滤纸发芽试验法研究了典型草坪除草 剂环草隆与4种重金属单一及复合污染对小麦和黄 瓜种子萌发及幼苗生长的毒性效应,筛选敏感的生 物标记物,建立剂量-效应关系,并在此基础上外推 环草隆在土壤中的预测无效应浓度(PNEC),为环草 隆的生态风险评价提供数据支持。

(1)2 种植物根长及小麦芽长对环草隆与重金属 非常敏感,且存在明显的剂量-效应关系,其中黄瓜 根长对环草隆最敏感, RI₅₀为 0.281 mg·L⁻¹,可以作 为环草隆对高等植物生态毒性效应评价的敏感生物 标记物。4 种重金属中,除 Zn 外,小麦根长对 Cu、 Pb、Cd 比黄瓜根长相对更敏感,但环草隆与 4 种重 金属复合污染时,黄瓜根长表现得更加敏感。

(2)4 种重金属与环草隆复合污染对小麦和黄瓜 的根长抑制表现出协同作用,而且随着重金属浓度 的增加,黄瓜和小麦根生长对环草隆的敏感性都增 加。环草隆与重金属复合污染对小麦芽长生长联合 效应主要与重金属种类及其暴露浓度有直接关系。

(3)以黄瓜的根伸长的急性毒性为毒性终点,利 用外推法计算得环草隆在土壤中的 PNEC 为 1.90 μg·kg⁻¹,远远低于环草隆的田间推荐使用量,说明 环草隆对高等植物黄瓜存在较大的急性毒性风险, 而且与重金属复合污染时,环草隆的 PNEC_{soil}值明 显降低,可能导致的生态风险将大大提高,因此环草 隆与重金属复合污染的毒性效应更应该引起关注。

通讯作者简介:王美娥(1975 -),女,博士,副研究员,长期以 来从事土壤重金属、农药单一复合污染过程与生态效应研 究,已发表 SCI 论文 20 余篇。

参考文献(References):

 张甘霖, 赵玉国, 杨金玲, 等. 城市土壤环境问题及其 研究进展[J]. 土壤学报, 2007, 44(5): 925-933
 Zhang G L, Zhao Y G, Yang J L, et al. Urban soil environment issues and research progresses [J]. Acta Pedologica Sinica, 2007, 44(5): 925-933 (in Chinese)

- [2] Ajmone-Marsan F, Biasioli M. Trace elements in soils of urban areas [J]. Water, Air, & Soil Pollution, 2010, 213(1-4): 121-143
- [3] Lu Y, Gong Z, Zhang G, et al. Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China [J]. Geoderma, 2003, 115(1): 101-111
- [4] Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China [J]. Microchemical Journal, 2010, 94(2): 99-107
- [5] Luo X S, Ding J, Xu B, et al. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils [J]. Science of the Total Environment, 2012, 424: 88-96
- [6] Cheng H, Li M, Zhao C, et al. Overview of trace metals in the urban soil of 31 metropolises in China [J]. Journal of Geochemical Exploration, 2014, 139: 31-52
- [7] Wang M, Markert B, Chen W, et al. Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing, China [J]. Environmental Monitoring and Assessment, 2012, 184(10): 5889-5897
- [8] Chen T B, Zheng Y M, Lei M, et al. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China [J]. Chemosphere, 2005, 60(4): 542-551
- [9] Xia X, Chen X, Liu R, et al. Heavy metals in urban soils with various types of land use in Beijing, China [J]. Journal of Hazardous Materials, 2011, 186(2): 2043-2050
- [10] 刘申,刘凤枝,李晓华,等. 天津公园土壤重金属污染 评价及其空间分析[J]. 生态环境学报, 2010, 19(5): 1097-1102
 Liu S, Liu F Z, Li X H, et al. Pollution assessment and spatial analysis on soil heavy metals of park in Tianjin [J]. Ecology and Environmental Sciences, 2010, 19(5): 1097-1102 (in Chinese)
- [11] 黄静. 西安市公园土壤的重金属含量水平及理化性质 研究[D]. 西安: 陕西师范大学, 2009: 37-41
- [12] Sun Y, Zhou Q, Xie X, et al. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China [J]. Journal of Hazardous Materials, 2010, 174(1): 455-462
- Yang Z, Lu W, Long Y, et al. Assessment of heavy metals contamination in urban topsoil from Changchun City, China [J]. Journal of Geochemical Exploration, 2011, 108(1): 27-38
- [14] 高飞,车少臣.城市绿地化学农药面源污染控制与无 公害城市绿地建设[J].北京园林,2009(3):41-43
- [15] Wang W, Li X H, Wang X F, et al. Levels and chiral sig-

natures of organochlorine pesticides in urban soils of Yinchuan, China [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(4): 505-509

- [16] Zhang W J, Jiang F B, Ou J F. Global pesticide consumption and pollution: With China as a focus [J]. Proceedings of the International Academy of Ecology and Environmental Sciences, 2011, 1(2): 125-144
- [17] Yang L, Xia X, Hu L. Distribution and health risk assessment of HCHs in urban soils of Beijing, China [J]. Environmental Monitoring and Assessment, 2012, 184 (4): 2377-238
- [18] Smith K P. Water-quality conditions, and constituent loads and yields in the Cambridge drinking-water source area, Massachusetts, Water Years 2005-07 [R]. Cambridge, Massachusetts: U. S. Geological Survey, Water Department, 2013
- [19] Smith K P. Hydrologic, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, Water Year 2006 [R]. Cambridge, Massachusetts: U.S. Geological Survey, Water Department, 2008
- [20] Smith K P. Hydrologic, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, Water Year 2007-08[R]. Cambridge, Massachusetts: U.S. Geological Survey, Water Department, 2011
- [21] Whittemore D O, McGregor K M, Marotz G A. Effects of variations in recharge on groundwater quality [J]. Journal of Hydrology, 1989, 106(1-2): 131-145
- [22] Chau H T C, Kadokami K, Duong H T, et al. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam [J]. Environmental Science and Pollution Research, 2015: 1-10. DOI: 10.1007/s11356-015-5060-z
- [23] Kong L, Kadokami K, Wang S, et al. Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin, North China [J]. Chemosphere, 2015, 122: 125-130
- [24] Marigómez I, Garmendia L, Soto M, et al. Marine ecosystem health status assessment through integrative biomarker indices: A comparative study after the Prestige oil spill "Mussel Watch" [J]. Ecotoxicology, 2013, 22(3): 486-505
- [25] OECD. Manual for investigation of HPV chemicals. Chapter 4. Initial assessment of data [R/OL]. (2012-12-01) [2017-01-13]. http://www.oecd.org/chemicalsafety/risk-assessment/chapter4initialtialassessmentofdata.htm.
- [26] European Chemicals Agency (ECHA). Guidance on the implementation of REACH. Guidance on information requirements and chemical safety assessment. Chapter R.8: Characterisation of dose [concentration]-response for human health [R]. Helsinki, Finland: ECHA, 2008
- [27] Tomlin C D S. ed. Siduron (1982-49-6) [M]// The e-Pesti-

cide Manual. 13th Edition Version 3.1 (2004-05). Surrey UK, British Crop Protection Council, 2004

- US EPA. Estimation Program Interface (EPI) Suite, Ver,
 4.0, Jan, 2009. [CP/OL]. (2009-01-01) [2017-01-13]. http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm
- [29] 刘艳. 北京市崇文区绿地表层土壤质量研究与评价[D]. 北京: 中国林业科学研究院, 2009: 30-54
- [30] 田宇,张娟. 北京市属公园土壤肥力现状评价[J]. 环境 科学与技术, 2014, 37(s1): 436-439
 Tian Y, Zhang J. Assessments of soil fertility status of several urban park in Beijing [J]. Environmental Science & Technology, 2014, 37(s1): 436-439 (in Chinese)
- [31] 罗上华, 毛齐正, 马克明, 等. 北京城市绿地表层土壤 碳氮分布特征[J]. 生态学报, 2014, 34(20): 6011-6019
 Luo S H, Mao Q Z, Ma K M, et al. Spatial distribution of soil carbon and nitrogen in urban greenspace of Beijing
 [J]. Acta Ecologica Sinica, 2014, 34(20): 6011-6019 (in Chinese)
- [32] Cheng Y, Zhou Q. Ecological toxicity of reactive X-3B red dye and cadmium acting on wheat (*Triticum aestivum*) [J]. Journal of Environmental Sciences, 2002, 14(1): 136-140
- [33] US EPA. Reregistration eligibility decision (RED) for siduron [R/OL]. (2008-05-22) [2017-01-13]. https://archive. epa.gov/pesticides/reregistration/web/pdf/siduron_red.pdf
- [34] Song Y F, Xu H X, Ren L P, et al. Inhibition and eco-toxicity of heavy metals pollution on vegetable growth in soils [J]. Journal of Agro-Environment Science, 2003, 22 (1): 13-15
- [35] Yin X L, Jiang L, Song N H, et al. Toxic reactivity of wheat (*Triticum aestivum*) plants to herbicide isoproturon
 [J]. Journal of Agricultural and Food Chemistry, 2008, 56 (12): 4825-4831
- [36] Munzuroglu O, Geckil H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in *Triticum aestivum* and *Cucumis sativus* [J]. Archives of Environmental Contamination and Toxicology, 2002, 43(2): 203-213
- [37] Wang M, Zhou Q. Single and joint toxicity of chlorimuron-ethyl, cadmium, and copper acting on wheat *Triticum aestivum* [J]. Ecotoxicology and Environmental Safety, 2005, 60(2): 169-175
- [38] Soudek P, Katrušáková A, Sedláček L, et al. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (*Linum usitatissimum* L.) [J]. Archives of Environmental Contamination and Toxicology, 2010, 59(2): 194-203
- [39] 王美娥. 豆磺隆-重金属生态毒理联合效应及分子诊断

[D]. 北京: 中国科学院研究生院, 2006: 61-63 Wang M E. Joint ecotoxicological effects of chlorimuron-

ethy and heavy metals and their molecular diagnosis [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2006: 61-63 (in Chinese)

- [40] 金彩霞, 刘军军, 鲍林林, 等. 磺胺间甲氧嘧啶-镉复合 污染对作物种子发芽的影响[J]. 中国环境科学, 2010, 30(6): 839-844
 Jin C X, Liu J J, Bao L L, et al. Joint toxicity of sulfamonomethoxine and Cd on seed germination and root elongation of crops in soil [J]. China Environmental Science,
- 2010, 30(6): 839-844 (in Chinese) [41] 符博敏, 岳林, 冯丹, 等. 恩诺沙星与 Cu 复合污染对白

菜和西红柿根及芽伸长的抑制作用[J]. 生态毒理学报, 2015, 10(5): 157-163

Fu B M, Yue L, Feng D, et al. Inhibitory effect of combined pollution of enrofloxacin and Cu on root and shoot elongation of cabbage and tomato [J]. Asian Journal of Ecotoxicology, 2015, 10(5): 157-163 (in Chinese)

[42] 金彩霞, 司晓薇, 毛蕾, 等. 铜-磺胺嘧啶复合胁迫对蔬菜种子发芽的急性毒性效应[J]. 生态毒理学报, 2015, 10(5): 164-171

Jin C X, Si X W, Mao L, et al. Acute toxic effect of Cusulfadiazine combined stress on the germination of vegetable seeds [J]. Asian Journal of Ecotoxicology, 2015, 10 (5): 164-171 (in Chinese)