

DOI: 10.7524/AJE.1673-5897.20181031001

华春秀, 张科, 刘庆春, 等. 五氯苯酚对淡水双壳类背角无齿蚌 ρ 型谷胱甘肽 S-转移酶表达的影响[J]. 生态毒理学报,2019, 14(5): 177-187 Hua C X, Zhang K, Liu Q C, et al. Effects of PCP on the ρ-GST expression in the freshwater bivalve *Anodonta woodiana* [J]. Asian Journal of Ecotoxicology, 2019, 14(5): 177-187 (in Chinese)

五氯苯酚对淡水双壳类背角无齿蚌 ρ 型谷胱甘肽 S-转移酶表达的影响

华春秀¹,张科²,刘庆春¹,李冰洁²,宋国英²,薛士鹏¹,于瑞雪²,王中晓¹, 张庆远¹,刘丽²,夏西超^{12,*}

南阳医学高等专科学校基础医学部,南阳 473061
 平顶山学院医学院,平顶山 476000

收稿日期:2018-10-31 录用日期:2019-01-17

摘要: 谷胱甘肽 S-转移酶(GST)在机体抗击氧化应激中发挥重要作用。前期研究表明,五氯苯酚(PCP)处理对背角无齿蚌(*Anodonta woodiana*)具有显著的氧化应激和急性毒性效应。为了探讨 PCP 慢性毒性效应,本研究将背角无齿蚌随机分为对照组和 PCP 处理组和对照组分别用 13.9 mg·L⁻¹和相同体积二甲亚砜处理;同时,克隆出 ρ 型谷胱甘肽 S-转移酶并命 名为 ρ-GST,分析 PCP 对 ρ-GST 表达的影响。ρ-GST 全长 cDNA 包含一个 57 bp 的 5'端非编码区,291 bp 的 3'端非编码区和 678 bp 的开放阅读框。ρ-GST 在背角无齿蚌斧足、外套膜、闭壳肌、心脏、肝胰腺、血淋巴和鳃中广泛表达。与对照组相比, PCP 处理后肝胰腺 ρ-GST mRNA 在第1天、第3天和第15天分别增加 18.18% 、82.88% (*P*<0.05)和 2.43 倍(*P*<0.01); PCP 处理 后鳃中 ρ-GST mRNA 水平增加 1.44 倍以上(*P*<0.05); PCP 处理后血淋巴中 ρ-GST mRNA 水平增加 1.44 倍以上(*P*<0.05); PCP 处理后血淋巴中 ρ-GST mRNA 水平显著上调。背角无齿蚌 ρ-GST 表达水平上调有助于对抗 PCP 处理所产生的应激效应,提高动物环境耐受能力。 关键词: 五氯苯酚;背角无齿蚌;ρ 型谷胱甘肽 S-转移酶

文章编号:1673-5897(2019)5-177-11 中图分类号:Q459 文献标识码:A

Effects of PCP on the ρ -GST Expression in the Freshwater Bivalve Anodonta woodiana

Hua Chunxiu¹, Zhang Ke², Liu Qingchun¹, Li Bingjie², Song Guoying², Xue Shipeng¹, Yu Ruixue², Wang Zhongxiao¹, Zhang Qingyuan¹, Liu Li², Xia Xichao^{1,2,*}

1. College of Basic Medicine, Nanyang Medical University, Nanyang 473061, China

2. College of Medicine, Pingdingshan University, Pingdingshan 476000, China

Received 31 October 2018 accepted 17 January 2019

Abstract: Glutathione S-transferases (GST) play a prominent role in protecting cells against oxidative stress. Our previous study showed that the reactive oxygen species (ROS) generated from pentachlorophenol (PCP) could cause an acute impact on freshwater bivalve *Anodonta woodiana*, but its chronic toxicity remain unclear. In order to investigate the chronic effect of PCP, clams *A. woodiana* were randomly grouped into PCP treated group in which

基金项目:河南省联合基金项目(182300410123);中国博士后基金项目(2016M590143)

作者简介:华春秀(1982—),女,讲师,研究方向为无脊椎动物免疫学,E-mail: huachunxiu08@163.com

^{*} 通讯作者(Corresponding author), E-mail: xiaxichao8336@163.com

animals were administrated with 13.9 mg·L⁻¹ PCP, and control group with similar volume of dimethyl sulfoxide. In addition, one GST sequences was isolated from *A. woodiana* and named ρ -GST. The full-length cDNA of ρ -GST contained a 5' unique taxpayer reference (UTR) of 57 bp, a 3' UTR of 291 bp and an open reading frame (ORF) of 678 bp encoding a polypeptide of 226 amino acids. The constitutive expression levels of ρ -GST was determined in different tissues including foot, mantle, adductor muscle, heart, hepatopancreas, hemocytes and gill. Administration of PCP could result in a significant increase of ρ -GST expression in the hepatopancreas, gill and hemocytes. In the hepatopancreas, ρ -GST increased by 18.18%, 82.88% (*P*<0.05) and 2.43 times (*P*<0.01) at day 1, 3 and 15 in contrasted with that of control group, respectively. In the gill, mRNA level of ρ -GST increased more than 1.44 times (*P*<0.05) compared with that of control group. In addition, expressions of ρ -GST expression in bivalve *A. woodiana* reacted against oxidative stress derived from PCP treatment.

Keywords: pentachlorophenol; Anodonta woodiana; p type of glutathione S-transferases

五氯苯酚(PCP)广泛应用于农药、木材防腐剂和 个人护肤品等工农业生产中,目前,在地表水、地下 水、污水和饮用水中都不同程度地被检测到[1-3]。 PCP 存在能够给水生生物和人类生存带来显著的健 康威胁,已被美国、中国和欧洲等国家和地区定为一 种具有严重危害的持久性污染物^[4-6]。在我国, PCP 主要用于杀灭血吸虫的中间宿主,由于其持久性的 存在,在大多数河流中仍然被广泛发现[1.7-8]。谷胱 甘肽 S-转移酶(GST)属于机体 Ⅱ 相生物转化系统酶 类,催化谷胱甘肽(GSH)与广泛外源性或内源性有 毒化合物亲电中心结合,如癌症化疗药物、化学致癌 物、农药、除草剂和氧化应激产物^[9-10]。在哺乳动物 中,根据GST底物特异性、免疫学性质和蛋白质序 列的同源性,把 GST 划分为 $\alpha, \mu, \pi, \theta, \sigma, \zeta$ 和 ω 等 7个大类[11]。在氧化应激条件下,GST 表达水平被 视为是一种适应性反应,GST 表达被认为是受氧化 应激动物的分子标志物^[12-13]。背角无齿蚌(Anodonta woodiana)作为淡水底栖生物的重要类群,在淡水 环境监测中具有重要作用[14-15]。前期研究发现, PCP 处理对背角无齿蚌产生显著的毒性伤害和应激 效应,具体机制有待进一步探讨^[16]。在本研究中,从 背角无齿蚌中克隆出 ρ 型谷胱甘肽 S-转移酶完整基 因序列并命名为 ρ-GST, 通过 real-time PCR 分析 ρ-GST 时空表达,为揭示 PCP 毒性效应奠定理论基础。

1 材料与方法(Materials and methods)

1.1 背角无齿蚌处理

背角无齿蚌购自南阳市水产市场, 壳长(6.5±0.5) cm, 处理之前, 动物置于实验室自动水循环系统中适应养殖2周。PCP 购自 Sigma-Aldrich(Sigma-Aldrich, St. Louis, MO), 溶解于二甲亚砜

(DMSO)中以制备储备液。动物处理实验在长方形 塑料盒(40 cm×25 cm;10 cm 高)中进行,饲养采用人 工模拟池塘水(每 1 L 去离子水中含 48 mg NaH-CO₃、33 mg CaCl₂·2H₂O、60 mg MgSO₄·7H₂O 和 0.5 mg KCl)^[16],每天更换水,动物喂食小球藻。为 了确定 ρ -GST 组织分布,对来自同一塑料盒的 5 只 动物进行解剖,取斧足、鳃、肝胰脏、闭壳肌、心脏、血 淋巴和外套膜等组织。根据上述动物处理方法,将 80 只河蚌随机饲养于 10 个塑料盒中,每盒 8 只,分 为对照组和 PCP 处理组,每组 5 个盒子。PCP 处理 组采用 13.9 mg·L⁻¹的 PCP 进行处理,对照组用同 体积 DMSO 处理,水中 DMSO 浓度不超过 3‰。0、 1、3、6、9、12 和 15 d 从每组中取出 5 只河蚌,解剖肝 胰脏、鳃和血淋巴,液氮速冻,于-80 ℃保存。

1.2 总 RNA 提取和 cDNA 第一链的合成

总 RNA 提取采用 TRIzol 试剂(宝生物生物有限公司,大连),1.2% 琼脂糖凝胶电泳检测 RNA 质量,具有完整 rRNA 条带的 RNA 用于合成 cDNA, M-MLV 试剂盒合成第一链 cDNA,用作 PCR 反应模板。

1.3 背角无齿蚌 ρ-GST 核心片段的扩增

简并引物 ρ-GST1 和 ρ-GST2 分离 ρ-GST cDNA 保守区域片段, PCR 产物连接至 pMDT-19 载体, 双 向测序。确定 ρ-GST 部分 cDNA 序列后, 根据部分 cDNA 序列设计的特异性引物(表 1), 按照试剂盒要 求, 扩增 ρ-GST cDNA 5'和 3'区域序列, 5'RACE 和 3'RACE 的 PCR 产物进行测序和拼接。

1.4 序列和系统发育分析

分析 ρ-GST 序列, 通过 GenBank 数据库搜索 (www.ncbi.nlm.nih.gov/blast)进行 BLAST 程序比对;

根据 http://www.cbs.dtu.dk/services/SignalP 预测信号 肽;采用 Simple Modular Architecture Research Tool (http://smart.embl-heidelberg.de/)预测蛋白质结构域; 使用 DANMEN 分析程序对 ρ-GST 基因进行多序列 比对; 通 过 Swiss-model (http://swissmodel.expasy. org/)预测 ρ-GST 的蛋白质三维结构;使用 MEGA5.0 软件,采用临近法构建系统进化树。

1.5 ρ-GST mRNA 水平定量检测

为了确定 ρ -GST 转录水平,采用 SYBR Premix Ex TaqTM 试剂盒并按照要求进行定量分析。 β -actin 作为内参基因,根据 ρ -GST-F 和 ρ -GST-R 引物 常用 PCR 仪中分离靶基因(表 1),琼脂糖凝胶电泳 仅检测出一个条带,PCR 产物测序,序列鉴别。使 用 ABI7500 实时检测系统(Applied Biosystems,美 国)进行 real-time PCR,构建标准曲线,通过 $2^{-\Delta\Delta CT}$ 分析 ρ -GST 表达水平。

1.6 统计学处理

ρ-GST 表达水平以 x±s 表示,采用双向方差分 析和两两比较分析(LSD 分析),确定组间、时间、组 间和时间交互作用来分析 ρ-GST 表达的显著性差 异。PCP 处理后 ρ-GST 的表达水平的显著性差异 采用单向方差分析(ANOVA), P <0.05 为差异有统计 学意义。

2 结果(Results)

 2.1 背角无齿蚌 ρ-GST 分子结构 背角无齿蚌 ρ-GST cDNA 全长为1 026 bp,包含 了 57 bp 的 5' 非编码区、291 bp 的 3' 非编码区和一 个 678 bp 的开放阅读框。开放阅读框为 226 个氨基 酸组成的多肽,分子质量为 26.80 kDa,等电点为 6.38。 终止信号(AATAAA)位于 3' UTR 的 986 ~ 991 处(图 1)。预测氨基酸序列包括 N 端 G-位(残基 8 ~ 85)和 C 端 H-位点(残基 92 ~ 204)2 个保守区域(图 1)。

背角无齿蚌 ρ-GST 和其他水生软体动物 GSTs 之间的多重序列比对结果表明,所有 GSTs 的 N-端 区域同源性较高,并且相对保守,而 C-端相对多变 (图 2)。在 ρ-GST 中,N 端部分是谷胱甘肽 S-转移 酶催化的必要条件,通过稳定二硫键来激活被束缚 的 GSH。在该区域中,Try7、Ser13、Pro15、Phe38、 His42、Lys43、Glu69 和 Ser70 都是所有谷胱甘肽 S-转移酶序列中的保守氨基酸,G-位点上这些氨基酸 与 GST 结合有关(图 2)。

2.2 AwGST1 和 AwGST2 的二级和三级结构分析

ρ-GST 蛋白质二级结构有 12 个 α -螺旋和 4 个 β-折叠组成(图 3A)。在 N 端 G-位点有 3 个 α -螺旋 和 4 个 β-折叠,C 端的 H-位点包含 8 个 α -螺旋。ρ-GST 的三维结构与其他物种 ρ 型谷胱甘肽 S-转移 酶有高度的相似性(图 3B)。

2.3 背角无齿蚌 ρ-GST 系统进化

背角无齿蚌 ρ-GST 氨基酸序列与腹足纲皱纹 盘鲍 GST 有 55% 同源性,与双壳纲长牡蛎(*Crassostrea gigas*)GST 有 55% 同源性,与腹足纲南极帽 贝 ρ-GST 有 50% 同源性,与菲律宾蛤仔 GST 有 46% 同源性(表 2)。

引物	序列 (5'~3')
Primer	Sequence $(5' \sim 3')$
ρ-GST-1	TGACGNTAGGACNCAAANCCNTCTC
ρ-GST-2	AGGAANCTGNCCAANAGGTGNTTCTT
5' Race Innerprimer	CATGGCTACATGCTGACAGCCTA
5' Race Outerprimer	CGCGGATCCACAGCCTACTGATGATCAGTCGATG
ρ-GST2-5-1	CCTCTGGCTTGGTTCGCCATTG
ρ-GST2-5-2	CATTTCTTTTGGATCATCTGGAATCAG
3' Race Outerprimer	TACCGTCGTTCCACTAGTGATTT
3' Race Innerprimer	CGCGGATCCTCCACTAGTGATTTCACTATAGG
ρ-GST2-3-1	GGAAACAGATAAACCGGATCTCCTGT
ρ-GST2-3-2	TCTAATGTATCCAACTTCGG
ρ-GST-F	CATCGCCAGTACAACGGCTTTTTC
ρ-GST-R	AGATCCGGTTTATCTGTTTCCTTCCA
β-F	CATCCCTTGCTCCTCCAACTATG
β-R	CTGGAAGGTAGAGAGAGAGAGCCAAG

表 1 实验过程中的引物 Table 1 Sequences of PCR primers used in this study

						CAT	GGGG	GAA	AGC	TGT	GCT	TGG	AGT	GTT	TCAG	TGT	AGG	AAG	GTT	TGT	GAG	GCA	.GTT	GCA	57
ATG	GCG	GAA	AAC	CATG	TTT	TTC	GTAC	CTGG	GGG	TCI	GGG	CAGC	CTI	CCA	ATGC	TGG	AGG	GTT	ATG	ATC	GTT	CTG	GAG	GAA	132
М	А	Е	Ν	М	F	L	Y	W	G	S	G	<u>S</u>	L	Р	С	W	R	V	М	Ι	V	L	Е	Е	2
AAG	AAG	TTT	GGT	GGC	TAT	CCC	CAAC	CAAA	TTA	ATI	GAC	GTTT	TCC	CAAA	AGAG	GAA	CAC	AAG	ACA	GAA	GAG	ATC	ATG	AAA	20′
K	Κ	F	G	G	Y	Р	Ν	Κ	L	Ι	Е	F	S	Κ	Е	Е	H	K	Т	Е	Е	Ι	М	Κ	5
CTT	AAC	ССТ	AGA	AGGA	CAG	GTT	CCC	CACG	TTC	CAGA	GAT	ſGGG	GAI	TATI	GTT	GTC	AAT	GAA	TCC	CAAC	GCT	ATA	TGT	CAG	282
L	Ν	Р	R	G	Q	V	Р	Т	F	R	D	G	D	Ι	V	V	Ν	E	<u>S</u>	Ν	А	Ι	С	Q	7
TAT	CTT	GAG	ACC	GAGA	TAC	CAAG	GAAC	CAC	CGGA	ACT	CAAC	GCTG	ATT	CCA	AGAT	GAT	CCA	AAA	GAA	ATG	GCG	GCA	GTA	CTC	357
Y	L	Е	Т	R	Y	Κ	Ν	Н	G	Т	K	L	Ι	Р	D	D	Р	K	Е	М	А	А	V	L	100
CAG	AAA	ATG	TAT	GAG	TCC	CAGT	CAAT	`ATA	CAG	GAG	GAAT	TTA	GTA	ACC	GGT	GTC	GTG	TAC	СТАС	CAA	TGG	CGA	ACC	AAG	432
Q	Κ	М	Y	Е	S	S	Ν	Ι	Q	Е	Ν	L	V	Т	G	V	V	Y	Y	Q	W	R	Т	Κ	12
CCA	GAG	GAA	AGA	GAT	GAG	AAA	GTG	TTC	GAA	GAG	GAA/	ACTT	CAA	AAA	AGCA	CGT	GAT	GAA	TTG	AGT	CGT	TGG	GAA	AAA	50′
Р	Е	Е	R	D	Е	Κ	V	F	Е	Е	K	L	Q	Κ	А	R	D	Е	L	S	R	W	Е	Κ	15
CAC	TTA	GAA	CAC	TCT	`AAT	ACC	CGGA	TAC	ATC	GCC	CAGT	FACA	ACC	GCT	TTT	TCC	ATG	GCC	GAC	CATC	TAC	TTC	TAC	CCT	582
Н	L	Е	Q	S	Ν	Т	G	Y	Ι	А	S	Т	Т	А	F	S	М	А	D	Ι	Y	F	Y	Р	17
TAC	GTG	GCG	CAC	GATG	GAT	CGG	TTT	CGC	ATA	.GAT	CTT	TCT	`AAA	TAT	TCCA	AAT	ATT	ATC	GCG	TAC	TAT	GAG	CGT	TTG	65′
Y	V	А	Q	М	D	R	F	R	Ι	D	L	S	K	Y	Р	Ν	Ι	M	А	Y	Y	Е	R	L	20
AAG	AAC	CAT	CCT	AGT	TTT	GTG	STCC	CACC	TAC	CCCA	ACC(GCAC	TGG	GAAC	GGAA	ACA	GAT	AAA	CCG	GAT	СТС	CTG	TCG	CGT	732
Κ	Ν	Η	Р	S	F	V	S	Т	Y	Р	Р	Н	W	Κ	Е	Т	D	K	Р	D	L	L	S	R	225
ATT	TAG	CAT	TTT	TTC	TCC	CGAC	CAGT	GAA	TGG	CAT	CTA	AATG	TAT	CCA	AACT	TCC	GCT	TGG	GAAT	ATT	GAG	ACT	TTC	CTTA	80′
Ι	*																								220
CAC	TGT	ACA	AGT	СТА	ACA	AAC	CATA	ACA	ACG	CTA	ATT/	АТАС	CTA	CAA	AGC	CATT	CAT	ACA	TGC	CGGA	GGT	AAT	AGT	TTT	882
TTC	CAT	CTG	TCC	СТСС	CAAT	CGC	CAGA	GGC	CAGG	GAA	ACCA	ATAA	.CCC	CAAA	AAAA	GTT	CAA	GGT	TAC	CATG	GTC	CATA	CTG	ACC	95'
CTT	TGA	AAT	CCA	ACTG	TAT	ATT	CAA	AGT	TAA	ATA	AAC	GCGA	CCA	AAA	AAAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA			1026

图1 背角无齿蚌 ρ-GST 基因的 cDNA 序列和推导的氨基酸序列

注:起始和终止密码用粗体表示,终止信号"AATAAA"以波浪线显示,谷胱甘肽(GSH)结合位点保守 氨基酸以下划线标注,GST的N-端保守区域用绿色阴影表示,GST的C-端保守区域以灰色阴影标注。

Fig. 1 Nucleotide and deduced amino acid sequences of p-GST of Anodonta woodiana

Note: The start and stop codons are indicated with bold. Putative polyadenylation signal "AATAAA" is showed with wavy line. The N-terminal conserved domains of GST is shaded with green. The C-terminal conserved domains of GST is shaded with grey. Animo acids of glutathione (GSH)-binding site (G-site) are marked with underline.

表 2 背角无齿蚌 ρ-GST 与其他物种 GST 序列同源性比较

Table 2 Percentage of identity respectively for pairwise alignment of ρ-GST protein

sequences between Anodonta woodiana and other species

	ρ-GST	HdGST	CgGST	AfGST	LeGST	RpGST	DrGST
ρ-GST	100						
HdGST	55	100					
CgGST	55	54	100				
AfGST	50	44	47	100			
LeGST	50	49	43	37	100		
RpGST	46	50	46	41	51	100	
DrGST	46	48	44	43	40	44	100

注:HdGST 为皱纹盘鲍谷胱甘肽 S-转移酶 A(ABO26605.1),CgGST 为长牡蛎谷胱甘肽 S-转移酶(EKC36795.1),AfGST 为栉孔扇贝(Azumapecten farreri)p 型谷胱甘肽 S-转移酶(ACF25903.1),LeGST 为南极帽贝 p 型谷胱甘肽 S-转移酶(ACM44933.1),RpGST 为菲律宾蛤仔 p 型谷胱甘肽 S-转移酶(AEW46331.1),DrGST 为斑马鱼(Danio rerio)p 型谷胱甘肽 S-转移酶(NP_001038525.1)。

Note: HdGST is *Haliotis discus discus* glutathione S-transferase A (ABO26605.1); CgGST is *Crassostrea gigas* glutathione S-transferase A (EKC36795.1); AfGST is *Azumapecten farreri* rho-class glutathione S-transferase (ACF25903.1); LeGST is *Laternula elliptica* rho-class glutathione S-transferase (ACM44933.1); RpGST is *Ruditapes philippinarum* rho-class glutathione S-transferase (AEW46331.1); DrGST is *Danio rerio* rho-class glutathione S-transferase (AEW46331.1); DrGST is *Danio rerio* rho-class glutathione S-transferase (NP_001038525.1).

ρ-GST	MAENMFLYWGSGSLPCWRVMIVLEEKKFGGYPN-KLIEFSKEEHKTEEIMKLNPRGQV	57
CgGST	MAENMFLFWGSGSIPCWKPMIVLEEKGFGGYKN-KLITFSNKEQKGEDILKLNPRGQV	57
HdGST	MSSNMFLYWGSGSIPCWKPMLVLEEKGLAGYPN-KKISFSDKEHKSEEILKLNPRGQV	57
LeGST	MATTSKPFVYWGSGSPPCWKVLLVLQEKKIDYDE—KIISFSKKEHKSEEILELNPRGQV	59
RpGST	-MASGKMILYWGSGSAPCWRPMLVLAEKGLSDKCTSKRLEFSKGQHKGTDILAINPRGQL	59
	* * * * * *	
ρ-GST	PTFRDGDIVVNESNAICQYLETRYKNHGTKLIPDDPKEMAAVLQKMYESS-NIQENLVTG	116
CgGST	PTFKDGDIVVNESNAICEYLECTYTDKGTQLIPTDKAKRARVLQRMHEAAANMQQKLVLD	117
HdGST	PTFKDGEIVVNESGAICFYLENKFSDKGTKLLPDDNAERARVLQRVFEVS-NVDSSIITN	116
LeGST	PTFTDGDVVVNESTAICMYLEEKYPKVPLFPSDTTIRAKVYQRMFETS-NISTNVMEF	116
RpGST	PAFQDGDVVVNESGAICMYLEEKYSDDSNRLLPQNVNERAEVYQRMFETS-NIISNVQEP	118
	* *	
ρ-GST	VVYYQWRTKPEER-DEKVFEEKLQKARDELSRWEKHLEQSNTGYIASTTA-FSMADI	171
CgGST	LLYYFFQTKEEDR-KEASNEEVAKKVEAAKEELDRWEAYLGETKAFVAGPD-FSMADG	173
HdGST	LLHYRFRTPKDKL-DEELLKTKYEAVRTELKKWEGHLAASQGYVVGSN-FTMADV	169
LeGST	VQYKMKNKDSIDQVLLKEKKDKAHVELGHWENYLKQTGGFVATKEFTMADV	167
RpGST	IVRYRYRTKTEDL-DHGYLKEKTVKAKEELDRWNTILKGKDYLCGGK-FTMADV	171
ρ-GST	YFYPYVAQMDRFRMDLSKY-PNIMAYYERLKNHPSFVSTYPPHWKETDKPDLLSRI	226
CgGST	WFYPFIAQSVRMGLELEKF-PNMKAYYDKVTARPSVQKSWPPHWKEEPPIISPFKGRI	230
HdGST	FFFPYVAFGVRLGLDISKY-PAISAYYDKVKDRPSVKATWPPHWADGPGDSSIMGPV-	225
LeGST	${\tt FFFPMVALIVR} QGANLKDSYPN1FKYYNMMDRPTIVKTMPPHWAESDSPGNLLDLC-$	223
RpGST	FFYPYLALFVRSGAKLADQ-PELERYYETVSKRPSVQATWPPHWKEGPGPGTLSDL	226

图 2 背角无齿蚌 ρ-GST 与其他物种 GST 序列多重比对

注:G-位点保守氨基酸残基用星号表示。CgGST 为长牡蛎谷胱甘肽 S-转移酶(EKC36795.1),HdGST 为皱纹盘鲍(Haliotis discus discus) 谷胱甘肽 S-转移酶 A(ABO26605.1),LeGST 为南极帽贝(Laternula elliptica)ρ 型谷胱甘肽 S-转移酶(ACM44933.1),

RpGST 为菲律宾蛤仔(Ruditapes philippinarum)ρ型谷胱甘肽 S-转移酶(AEW46331.1)。

Fig. 2 Multiple alignment of ρ-GST of Anodonta woodiana compared with other GSTSs Note: CgGST is Crassostrea gigas glutathione S-transferase A (EKC36795.1); HdGST is Haliotis discus discus glutathione S-transferase A (ABO26605.1); LeGST is Laternula elliptica rho-class glutathione S-transferase (ACM44933.1); RpGST is Ruditapes philippinarum rho-class glutathione S-transferase (AEW46331.1). The conserved residues of G-sites are marked with asterisk.

图 3 背角无齿蚌 ρ-GST 二级和 3D 结构预测

注:A. ρ-GST 二级结构;B. ρ-GST 的 3D 结构。

Fig. 3 Predicted secondary and 3D structures of ρ-GST deduced amino acids of Anodonta woodiana Note: A. The secondary structure of ρ-GST; B. The 3D structure of ρ-GST.

Fig. 4 Phylogenetic relationship of ρ-GST of Anodonta woodiana according to neighborhood-joining method

系统进化树结果显示,背角无齿蚌 ρ -GST 与软体动物谷胱甘肽 S-转移酶 A 类群和 ρ 型 GST 亲缘 关系较近,谷胱甘肽 S-转移酶 A 类群和 ρ 型 GST 分为了一组(图 4)。研究结果显示,从选择的物种 中,同一类型 GST 的不同个体之间保持较高的 bootstrap 值,特别是在 θ 型 GST 中,昆虫家蚕(Bombyx mori)和脊椎动物之间 bootstrap 值达到 99%。 值得注意的是,2种类型 GST 之间,bootstrap 值明显 减小,如 ω 型 GST 和 ζ 型 GST ω 型 GST 和 δ 型 GST ζ 型 GST 和 σ 型 GST 等。

2.4 背角无齿蚌 ρ-GST 表达水平的组织分布

背角无齿蚌 ρ-GST 广泛表达于斧足、外套膜、 闭壳肌、心脏、肝胰腺、血淋巴和鳃(图 5)。背角无齿 蚌 ρ-GST 在肝胰腺中表达水平最高,在鳃、血淋巴、 心脏、斧足和闭壳肌中次之,外套膜中表达水平较低 (图 5)。

2.5 PCP 对背角无齿蚌 ρ-GST 表达的影响

在肝胰腺中,与第0天相比,背角无齿蚌ρ-GST 表达在第1~15天出现了明显的波动。PCP处理对 背角无齿蚌ρ-GST 表达具有显著影响。PCP处理 后背角无齿蚌ρ-GST mRNA水平呈现时间依赖的 上调模式。与对照组相比,ρ-GST 表达水平在第1 天、第3天和第15天分别增加18.18%、82.88%(*P*< 0.05)和2.43倍(*P*<0.01)(图6)。与对照组相比,PCP 处理后背角无齿蚌鳃中ρ-GST 表达水平增加 了1.44倍以上(*P*<0.05)(图7)。与对照组相比,PCP 处理后背角无齿蚌血淋巴中ρ-GST 表达水平在第3 至15天显著升高(图8)。

注:每组数据来源于5只动物。

Fig. 5 Real-time PCR analysis of ρ -GST transcript from different tissues of *Anodonta woodiana* Note: n = 5 replicates.

含 五氯本酚(**PCP**) 对育用元齿蚌杆族族 ρ-GST 基因表达的影响 注: n=5/组/时间点;*、** 表示与相应对照组相比,有显著差异(P<0.05、P<0.01);#表示与0 d 相比,有显著差异(P<0.05)。 Fig. 6 Temporal expression of ρ-GST in hepatopancreas of *Anodonta woodiana* after pentachlorophenol (PCP) challenge as measured by quantitative real-time RT-PCR Note: Bars represent means ± SE; n=5/each group/each time point. * P<0.05, ** P<0.01 vs control

group at the same time. # P<0.05, ## P<0.01 vs control group at the day 0.

3 讨论(Discussion)

ρ-GST 有 N 端区域和 C-端区域 2 个不同区域; 多重序列比对表明, ρ-GST 的 N 端 G-位点相对保 守,而C端多变,提示这些特征与GST的功能有关。 一般来说,供GSH结合的G位点具有高度特异性 包含11个高度保守氨基酸:Tyr7、Arg13、Trp38、 Lys46、Gln53、Leu54、Pro55、Gln66、Ser67、Glu98和

图 7 PCP 对背角无齿蚌鳃 ρ-GST 基因表达的影响

注:n=5/组/时间点;*、** 表示与相应对照组相比,有显著差异(P<0.05、P<0.01)。

Fig. 7 Temporal expression of ρ -GST in gill of *Anodonta woodiana* after PCP challenge as measured by quantitative real-time RT-PCR Note: Bars represent means \pm SE; n=5/each group/each time point. * P<0.05, ** P<0.01 vs control group

at the same time.

注:n=5/组/时间点;*、** 表示与相应对照组相比,有显著差异(P<0.05、P<0.01);#表示与0d相比,有显著差异(P<0.05)。 Fig. 8 Temporal expression of p-GST in hemocytes of *Anodonta woodiana* after PCP challenge as measured by quantitative real-time RT-PCR Note: Bars represent means ± SE; n=5/each group/each time point. * P<0.05, ** P<0.01 vs control group at the same time. # P<0.05 vs control group at the day 0.

Asp99^[17-18]。前期研究表明, Tyr 在稳定结合 GSH 方面发挥重要作用^[17-18],提示 ρ-GST 的 N 端保守氨 基酸残基有助于结合 GSH。H-位点是亲电底物的 结合点,C 端的 H-位点相对多变与适应更广泛底物 的结构有关^[19-20]。 多序列比对结果显示,ρ-GST 氨基酸序列与长 牡蛎和腹足纲皱纹盘鲍 GST-A 序列很相似,并与ρ 型 GST 具有高度同源性。基于系统进化分析数据 和氨基酸序列比对结果,ρ-GST 应归为ρ型 GST。 研究已表明,序列相似性程度在 GST 分类中没有明 确标准,GST 同工酶的演化关系仍然存在广泛争 议^[21]。大家普遍认为,在一类GST 个体中同源性超 过 40% 划分为一个类群,同源性小于 25% 类群划分 为其他类群^[21]。 θ 类GST 第一个关于子家族演化 的描述表明, θ 类GST 在从有氧细菌到更高真核生 物中都存在,呈现广泛分布,序列具有高度保守性, 是较为原始的类群^[22]。 σ 类GST 是从哺乳动物 α 、 μ 和 π 这 3 个类群中分离出来的, ρ 和 θ 从 α 、 μ 、 ρ 和 θ 中分离出来^[23]。由此可见,GST 类群进化经历 了从无脊椎动物到脊椎动物的复杂里程。

背角无齿蚌 ρ-GST 在肝胰腺中表达水平最高, 在鳃、血淋巴、心脏、斧足和闭壳肌内中等表达,在外 套膜表达水平较低,这提示 ρ-GST 这种表达模式可 能与清除活性氧以及维持氧化和抗氧化细胞之间平 衡有关。正常情况下,活性氧簇(ROS)保持相对较 低水平,ROS 会被一系列抗氧化剂酶迅速消除,以 维持 ROS 水平和抗氧化剂酶活性之间的均衡。在 双壳类动物,肝胰腺是重要代谢器官,在解毒和外源 性物质的降解方面发挥重要的作用^[24]。软体动物 GST 能降解水体农药、有机污染物和其他有毒化学 物质^[25]。因此,肝胰腺 ρ-GST mRNA 水平高表达与 环境中出现外源性有毒物质降解有关。

在整个实验过程中,PCP 明显诱导背角无齿蚌 肝胰腺、鳃和血淋巴中 ρ-GST 的表达,提示 ρ-GST 表达水平上调有助于参与 PCP 解毒过程和抗氧化 过程。对于机体而言,ROS 主要包括过氧化物阴离 子、过氧化氢、烷基过氧化物、单线态氧和羟基自由 基^[26]。背角无齿蚌是滤食性淡水动物,PCP 易沉积 和过量积累在其体内,可以催化生成 ROS^[3-4]。GST 广泛分布在所有活细胞中并参与机体有毒物质降 解,GST 通过与毒素结合,能够主动或者被动地与 致癌物、治疗制剂和氧化应激产物等外源性/内源性 有毒物质结合[27-28],促进细胞排毒和自我保护的作 用。研究表明,正常情况下 GST 持续表达与机体解 毒密切相关,而 GST 的高表达参与保护细胞免受内 源性氧化应激的影响[27-29]。已有研究表明,诸多外 界因素诱导 GST 表达,GST 被认为是一种对抗异种 生物化学毒性的有效解毒酶。高水平 GST 与农药 降解密切有关^[30-31]。褐飞虱(Nilaparvata lugens)GST 水平增高有助于抵抗氧化损伤,保护组织^[32]。综上 所述,背角无齿蚌中ρ-GST 表达上调在降低 PCP 导 致的氧化应激和细胞损伤过程中发挥着积极作用。

PCP 处理后 ρ-GST 表达水平在不同组织表现

出不同特征。对于该现象,一种解释可能与这些组 织不同生理功能有关。软体动物肝胰腺具有肝和胰 腺双重功能,参与消化和中和大量有毒物质^[33-34]。 鳃位于壳腔内,通过水体流动实现呼吸功能,直接与 外部环境接触,上皮组织非常薄^[35],鳃也是环境污染 物作用的重要靶器官之一^[36]。双壳类血淋巴是防御 病原侵染的重要防线,也是减少 ROS 生成的重要防 线,通过吞噬作用和呼吸爆发过程消除环境污染 物^[37]。众所周知,呼吸爆发过程与双壳类血淋巴中 重金属和污染物所产生的氧化应激密切相关^[37-38]。 呼吸爆发在消除重金属和污染物产生的毒性方面起 着潜在的作用,一些复杂因素可能参与肝胰腺、鰓和 血淋巴中 ρ-GST 表达调控。另一种解释是 ρ-GST 可 能在不同的组织和不同的发育阶段扮演不同的角色。

与脊椎动物相比,软体动物主要依靠自身的免疫能力,而血淋巴细胞是先天防御措施的主要途径之一。维持机体稳态是一个复杂过程,需要多个器官参与。在环境压力下,一系列抗氧化酶表达在其中发挥重要的作用,高表达涉及保护细胞,抵抗内源 性氧化应激。背角无齿蚌ρ-GST在肝胰腺、鳃和血淋巴中表达显著增加有助于清除 PCP 处理产生的 ROS,提高细胞氧化应激能力,实现机体稳态。

通讯作者简介:夏西超(1977—),男,动物学博士,教授,主要 研究方向为水生生物毒理学,发表学术论文 60 余篇。

参考文献(References):

- Zheng W, Yu H, Wang X, et al. Systematic review of pentachlorophenol occurrence in the environment and in humans in China: Not an egligible health risk due to the reemergence of schistosomiasis [J]. Environment International, 2012, 42: 105-116
- [2] Chen Y, Yu S, Tang S, et al. Site-specific water quality criteria for aquatic ecosystems: A case study of pentachlorophenol for Tai Lake, China [J]. Science of the Total Environment, 2016, 541: 65-73
- [3] Okeke B C, Paterson A, Smith J E, et al. Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of *Lentinula edodes* [J]. Applied Microbiology and Biotechnology, 1997, 48(4): 563-569
- [4] Law W M, Lau W N, Lo K L, et al. Removal of biocide pentachlorophenol in water system by the spent mushroom compost of *Pleurotus pulmonarius* [J]. Chemosphere, 2003, 52(9): 1531-1537
- [5] Xing L, Sun J, Liu H, et al. Combined toxicity of three

chlorophenols 2, 4-dichlorophenol, 2, 4, 6-trichlorophenol and pentachlorophenol to *Daphnia magna* [J]. Journal of Environmental Monitoring, 2012, 14(6): 1677-1683

- [6] Zhou W M, Fu D Q, Sun Z G. Blacklist: China preferred controlled pollutant in water [J]. Environmental Monitoring in China, 1990, 6: 1-3
- [7] Olaniran A O, Igbinosa E O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes [J]. Chemosphere, 2011, 83(10): 1297-1306
- [8] Zheng W, Wang X, Yu H, et al. Global trends and diversity in pentachlorophenol levels in the environment and in humans: A meta-analysis [J]. Environmental Science & Technology, 2011, 45: 4668-4675
- [9] Hayes J D, Flanagan J U, Jowsey I R. Glutathione transferases [J]. Annual Review of Pharmacology and Toxicology, 2005, 45: 51-88
- [10] Sheehan D, Meade G, Foley V M, et al. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily [J]. Biochemical Journal, 2001, 360(1): 1-16
- [11] Zhang L, Qiu L, Wu H, et al. Expression profiles of seven glutathione S-transferase (GST) genes from *Venerupis philippinarum* exposed to heavy metals and benzo [a] pyrene [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2012, 155(5): 17-27
- [12] Yang Y, Cheng J Z, Singhal S S, et al. Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation [J]. The Journal of Biological Chemistry, 2001, 276(22): 19220-19230
- [13] Park H, Ahn I Y, Kim H, et al. Glutathione S-transferase as a biomarker in the Antarctic bivalve *Laternula elliptica* after exposure to the polychlorinated biphenyl mixture Aroclor 1254 [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009, 150(4): 528-536
- [14] Liu H, Yang J, Gan J. Trace element accumulation in bivalve mussels *Anodonta woodiana* from Taihu Lake, China [J]. Archives of Environmental Contamination and Toxicology, 2010, 59(4): 593-601
- [15] Zhang X, Liu Z, Jeppesen E, et al. Effects of depositfeeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: Implications for the restoration of eutrophic shallow lakes [J]. Water Research, 2014, 50: 135-146

- [16] Xia X, Hua C, Xue S, et al. Response of selenium-dependent glutathione peroxidase in the freshwater bivalve *Anodonta woodiana* exposed to 2,4-dichlorophenol, 2,4,6trichlorophenol and pentachlorophenol [J]. Fish and Shellfish Immunology, 2016, 55: 499-509
- Xia C, Meyer D J, Chen H, et al. Chemical modification of GSH transferase P1-1 confirms the presence of Arg-13, Lys-44 and one carboxylate group in the GSH-binding domain of the active site [J]. Biochemical Journal, 1993, 293(Pt 2): 357-362
- [18] Karshikoff A, Reinemer P, Huber R, et al. Electrostatic evidence for the activation of the glutathione thiol by Tyr7 in π-class glutathione transferases [J]. European Journal of Biochemistry, 1993, 215(3): 663-670
- [19] Balchin D, Wallace L, Dirr H W. S-Nitrosation of glutathione transferase p1-1 is controlled by the conformation of a dynamic active site helix [J]. The Journal of Biological Chemistry, 2013, 288(21): 14973-14984
- [20] Balchin D, Fanucchi S, Achilonu I, et al. Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1
 [J]. Biochimica et Biophysica Acta, 2010, 1804(12): 2228-2233
- [21] Mannervik B, Board P G, Hayes J D, et al. Nomenclature for mammalian soluble glutathione transferases [J]. Methods in Enzymology, 2005, 401: 1-8
- [22] Buetler T M, Eaton D L. Glutathione S-transferases: Amino acid sequence comparison, classification and phylogenic relationship [J]. Journal of Environmental Science and Health Part C, 1992, 10(2): 181-203
- [23] Sheehan D, Meade G, Foley V M, et al. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily [J]. Biochemical Journal, 2001, 360(Pt 1): 1-16
- [24] Ben Naceur C, Maxime V, Ben Mansour H, et al. Oyster's cells regulatory volume decrease: A new tool for evaluating the toxicity of low concentration hydrocarbons in marine waters [J]. Ecotoxicology and Environmental Safety, 2016, 133: 327-333
- [25] Chen J, Xiao S, Deng Y, et al. Cloning of a novel glutathione S-transferase 3 (GST3) gene and expression analysis in pearl oyster, *Pinctada martensii* [J]. Fish and Shellfish Immunology, 2011, 31(6): 823-830
- [26] Ognjanovic B I, Markovic S D, Pavlovic S Z, et al. Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: Protective effect of selenium [J]. Physiological Research, 2008, 57(3): 403-411

- [27] Monteiro D A, de Almeida J A, Rantin F T, et al. Oxidative stress biomarkers in the freshwater characid fish, *Brycon cephalus*, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion) [J]. Comparative Biochemistry and Physiology C: Toxicology & Pharmacology, 2006, 143(2): 141-149
- [28] Shallaja M S, D' Silva C. Evaluation of impact of PAH on a tropical fish, *Oreochromis mossambicus* using multiple biomarkers [J]. Chemosphere, 2003, 53(8): 835-841
- [29] Schmidt K, Steinberg C E W, Pflugmacher S, et al. Xenobiotic substances such as PCB mixtures (Aroclor 1254) and TBT can influence swimming behavior and biotransformation activity (GST) of carp (*Cyprinus carpio*) [J]. Environmental Toxicology, 2004, 19(5): 460-470
- [30] Mu C, Wang Q, Yuan Z, et al. Identification of glutaredoxin 1 and glutaredoxin 2 gene from *Venerupis philippinarum* and their responses to benzo [a] pyrene and bacterial challenge [J]. Fish and Shellfish Immunology, 2012, 32(3): 482-488
- [31] Yanola J, Chamnanya S, Lumjuan N, et al. Insecticides resistance in the *Culex quinquefasciatus* populations from northern Thailand and possible resistance mechanisms [J]. Acta Tropica, 2015, 149: 232-328
- [32] Vontas J G, Small G J, Hemingway J. Glutathione Stransferases as antioxidant defence agents confer pyrethroid resistance in *Nilaparvata lugens* [J]. Biochemical

Journal, 2001, 357(Pt1): 65-72

- [33] Soldatov A A, Gostiukhina O L, Golovina I V. Antioxidant enzyme complex of tissues of the bivalve *Mytilus galloprovincialis* Lam. under normal and oxidative-stress conditions: A review [J]. Applied Biochemistry and Microbiology, 2007, 43(5): 621-628
- [34] Pipe R K, Coles J A, Carissan F M M, et al. Copper induced immunomodulation in the marine mussel, *Mytilus edulis* [J]. Aquatic Toxicology, 1999, 46(1): 43-54
- [35] Allam B, Raftos D. Immune responses to infectious diseases in bivalves [J]. Journal of Invertebrate Pathology, 2015, 131(12): 121-136
- [36] Rajalakshmi S, Mohandas A. Copper-induced changes in tissue enzyme activity in a freshwater mussel [J]. Ecotoxicology and Environmental Safety, 2005, 62(1): 140-143
- [37] De Zoysa M, Pushpamali W A, Oh C, et al. Transcriptional up-regulation of disk abalone selenium dependent glutathione peroxidase by H₂O₂ oxidative stress and *Vibrio alginolyticus* bacterial infection [J]. Fish and Shellfish Immunology, 2008, 25(4): 446-457
- [38] Chatziargyriou V, Dailianis S. The role of selenium-dependent glutathione peroxidase (Se-GPx) against oxidative and genotoxic effects of mercury in haemocytes of mussel *Mytilus galloprovincialis* (Lmk.) [J]. Toxicology in Vitro, 2010, 24(5): 1363-1372 ◆