目前抗生素污染已经成为全球关注的环境问题[1-6]。海洋[7]、湖泊[8-9]、地下水[10]和土壤[11]等环境中均有抗生素检出。城市河流作为受人类活动影响最大的水体,抗生素在其中广泛存在。巴西的库里蒂巴[1],中国的贵阳[12]、重庆[13]和上海[14]等多个城市河流中均检测到抗生素残留,虽然浓度大多为“ng·L-1”级别,但抗生素的化学稳定性和生物毒性决定了低浓度的抗生素也会对水生生物甚至整个水生态环境带来严重影响[15-16]。研究表明,阿根廷科尔多瓦市的苏基亚河、我国的珠江、长江等河流均存在抗生素的生态高风险[2,6]。
目前有关中国城市水环境抗生素的研究中主要集中在南方地区。北方地区人口密集,作为我国重要的医药加工和制造基地,拥有中国医药、哈尔滨制药、华北制药和石家庄制药等多个大型制药企业[17-18]。已有研究发现华北地区的子牙河、滏阳河和永定河农村周边水环境中存在抗生素残留[19],但有关城市河流中抗生素污染的研究相对匮乏。因此本研究以北方地区的2条城市河流为研究对象,对磺胺类、喹诺酮类和β-内酰胺类等10种典型抗生素的污染特征进行探究,并采用风险商值法对水中的抗生素进行生态风险评估。以期为北方城市河流抗生素污染的防治及相关研究提供科学依据和参考。
Na2EDTA(分析纯,天津欧博凯);甲酸、甲醇和乙腈均为色谱纯,购自德国Merck;磺胺嘧啶(SDZ,纯度99.7%)、甲氧苄啶(TMP,纯度99.8%)、磺胺甲恶唑(SMX,纯度99.6%)、头孢克洛(CFC,纯度94.4%)、头孢克肟(CFM,纯度89.2%)、头孢唑林(CZO,纯度99%)、诺氟沙星(NOR,纯度99.5%)、环丙沙星(CIP,纯度84.2%)、洛美沙星(LOM,纯度90.4%)和氟罗沙星(FO,纯度99.2%)标准样品均购自(中国)药品生物制品研究所。
分别在2018年8月和12月,对邯郸市滏阳河和沁河的水样及沉积物进行采集。从滏阳河进入邯郸城区断面(张庄桥)至出城区断面(苏里)依次设置9个采样点,F1~F9。沁河从上游到下游依次设置6个采样点,分别为Q1~Q6。沁河在F7点前汇入滏阳河。采样点具体位置如图1所示。
用采水器采集2 L距河面0~50 cm的表层水样,保存在棕色试剂瓶中。用抓斗式采泥器采集100 g表层沉积物,锡箔纸包裹并用密封袋塑封。将样品于4 ℃冷藏运回实验室并于24 h内完成预处理。
水样:取500 mL水样过0.45 μm滤膜后加入0.5 g Na2EDTA,用4 mol·L-1的盐酸调节其pH=3左右。以5~10 mL·min-1的流速将水样通过预先用5 mL甲醇、5 mL 0.1%的甲酸水活化好的Oasis HLB小柱(500 mg×6 mL,Waters公司)。待水样富集完成后用6 mL 5%甲醇水淋洗吸附柱,真空干燥30 min。待吸附柱完全干燥,将6 mL甲醇分3次通过吸附柱进行洗脱。洗脱液经氮吹干燥后加入1 mL HPLC初始流动相(V(1%甲酸水)∶V(甲醇)∶V(乙腈)=8∶1∶1)溶解底物,溶液过0.45 μm有机相针式过滤器移入样品瓶进行HPLC分析[20]。
沉积物:沉积物样在-20 ℃的环境中预冷冻,冷冻完成的样品转入冷冻干燥机中-80 ℃冷冻干燥24 h。待样品完全干燥后将其研磨,过100目筛去除杂质。准确称取2 g沉积物干粉于25 mL离心管中,加入10 mL甲醇,涡旋5 min,超声10 min,4 000 r·min-1离心5 min,收集上清液。如此重复提取3次并混合上清液至500 mL棕色容量瓶中,加入蒸馏水定容。定容完成的提取液经0.45 μm微孔滤膜抽滤去除杂质,加入0.5 g Na2EDTA,盐酸调节pH=3左右,参照水样中抗生素检测方法进行固相萃取和HPLC分析。
参考文献[20]采用高效液相色谱仪(岛津LC-2030)对样品进行分析检测。色谱条件为:Shim-pack GIST C18色谱柱(250 mm×4.6 mm, 5 μm),柱温40 ℃,流速0.8 mL·min-1,进样量30 μL,检测波长270 nm,梯度洗脱步骤如表1所示。
采用外标法对样品进行定量分析。用甲醇配制10种抗生素的混标储备液,每种抗生素浓度为0.1 mg·L-1。将混标溶液逐级稀释为1.0、0.8、0.6、0.5、0.4、0.2、0.1和0.05 μg·L-1浓度梯度的混标使用液,10种目标抗生素的标准曲线相关系数均>0.99;在2个样品中分别添加0.1、0.5和1 μg·L-1 3个浓度水平的目标抗生素混标使用液进行加标回收,加标回收率在78.6%~101.5%之间。
图1 采样点位示意图
Fig. 1 Schematic diagram of sampling points
表1 梯度洗脱步骤
Table 1 Gradient elution steps
时间/minTime/min流动相A/%Mobile phase A/%流动相B/%Mobile phase B/%流动相C/%Mobile phase C/%08010106652510860301095040101050401014801010
1.6.1 以单物种测试为基础的评估因子法
根据欧盟技术指导文件(TGD)中关于环境风险评价的方法,采用风险商值法(RQ)评价抗生素在水体中的生态风险[21],计算公式为:
RQ=MEC/PNEC
PNEC=(EC50或LC50)/AF
式中:MEC为环境中的实际检出浓度(ng·L-1),基于最严重的情况考虑,MEC选择最大值计算;PNEC为预测无效应浓度,是EC50(半数效应浓度,ng·L-1)或者LC50(半数致死浓度,ng·L-1)与评价因子(AF)的比值。根据RQ值可将生态风险划分为高风险(RQ>1),中等风险(0.1≤RQ<1),低风险(0.01≤RQ<0.1),无风险(RQ<0.01)[22]。相关毒理数据从已有研究中查得,如表2所示。
1.6.2 物种敏感度分布曲线法(SSD)
SSD方法是传统生态风险评价的外推,成形于1985年颁布的技术指南[29]中,在1998年美国环境保护局(US EPA)颁布的《生态风险评价指南》中通过一个风险评估实例认可了SSD在生态风险评价中的应用[30]。SSD法通常利用急性(LC50或EC50)或慢性(LOEC或NOEC)毒性数据进行曲线拟合,通过计算最大环境许可浓度阈值(HCX,通常取值HC5,即该浓度下受到影响物种数不超过总物种数的5%时的浓度)进行风险评价。具体步骤如下。
(1)毒性数据的采集
SSD要求每种抗生素有4种以上不同类别生物的毒性数据[31],要有明确的受试生物、受试终点和暴露时间[32]。本研究中有关SDZ、SMX、TMP、CIP、NOR、LOM、FO和CZO的毒性数据来源于已发表的文献和EPA ECOTOX毒性数据库(Https://cfpub.epa.gov/ecotox/),具体数据如表3所示。
(2)SSD曲线拟合
研究选用急性毒性数据(LC50或EC50)进行SSD曲线拟合,将急性毒性数据从小到大依次进行排序,最小为1,最大为N,n为序号,对应的累计概率则为1/(N+1)。以LC50或EC50对应的浓度对数值为横坐标,以概率密度为纵坐标进行曲线拟合[33]。目前国际上常用的SSD拟合模型有Sigmoid、Gaussian、Gompertz、Logistic、Logarithm、Exponential growth和Lorentzian等[34-36],本研究从中选取合适的模型进行了曲线拟合。
表2 抗生素生态毒理数据
Table 2 Antibiotic ecotoxicological data
抗生素Antibiotics受试生物MicroorganismEC50(LC50)/(mg·L-1)AFPNEC/(ng·L-1)文献LiteratureSDZ羊角月牙藻S. capricornutum2.21 0002 200[23]SMX聚球藻S. leopoliesis0.271 000270[24]TMP红假单胞菌R. salina161 00016 000[25]CIP绿脓杆菌M. aeruginosa0.0171 00017[26]NOR费氏弧菌V. fischeri0.022100220[27]LOM小浮萍Lemna minor0.1061 000106[26] FO藻类Algae1 128.3291 0001 128 329[17]CZO水华鱼腥藻A. flosaquae0.004110410[28]
注:EC50表示半数效应浓度;LC50表示半数致死浓度;AF表示评价因子;PNEC表示预测无效应浓度。
Note: EC50 is the median effect concentration; LC50 is the median lethal concentration; AF is the evaluation factor; PNEC is the predicted no-effect concentration.
表3 抗生素急性毒性数据
Table 3 Acute toxicity data of antibiotics
抗生素Antibiotics受试生物MicroorganismLC50或EC50/(mg·L-1)毒性数据来源Toxicity data sourceSDZ羊角月牙藻S. capricornutum2.19[23]水蚤 Daphnia10.3EPA ECOTOX绿藻 Green algae40.4EPA ECOTOX鱼 Fish907EPA ECOTOXSMX浮萍Lemna minor0.62EPA ECOTOX普通小球藻Chlorella vulgaris0.98[38]羊角月牙藻S. capricornutum1.53EPA ECOTOX小球衣藻 Sphaerocarpus3.56[37] 臂尾轮虫Brachionus plicatillis9.63EPA ECOTOX蛋白核小球藻Chlorella pyrenoidosa18.8[39]费氏弧菌 Vibrio fischeri85.7[39]大型蚤 Daphnia188[39]刺参 Sea cucumber297[40]青鳉 Oryzias latipes563EPA ECOTOX斑马鱼胚胎 Zebrafish embryo1 300[41]TMP水蚤 Daphnia6.38EPA ECOTOX绿藻 Green algae20.7EPA ECOTOX糠虾 Mysid111EPA ECOTOX鱼 Fish212EPA ECOTOXCIP铜绿微囊藻 Microcystis aeruginosa0.00922EPA ECOTOX大型蚤 Daphnia1.59EPA ECOTOX羊角月牙藻 S. capricornutum9.50EPA ECOTOX小球藻 Chlorella vulgaris20.6[42]亚心形扁藻 Platymonas subcordiformis28.7[43]羊角月牙藻 S. capricornutum2.97[44] 东部食蚊鱼 Gambusia holbrooki60.0[44]近具刺链带藻 Desmodesmus subspicatus100[44] 孔雀鱼 Poecilia reticulata350[45]NOR盐生杜氏藻 Dunaliella salina10.5[46]新月菱形藻 N. closterium25.4[46] 蛋白核小球藻 Chlorella pyrenoidosa31.4[47]刺参 Sea cucumber37.7[40] 发光菌 Luminescent bacteria48.2[48]斜生栅藻 Scenedesmus obliquus50.2[47] 大型蚤 Daphnia195[47] 孔雀鱼 Poecilia reticulata237 [45] 斑马鱼 Barchydanio rerio Var646[49]草鱼 Ctenopharyngodon idellus1 000 EPA ECOTOXLOM铜绿微囊藻 Microcystis aeruginosa0.186EPA ECOTOX骨条藻 Skeletonema2.84EPA ECOTOX羊角月牙藻 S. capricornutum22.7[50]大型蚤 Daphnia130[50] 大型蚤 Daphnia420[50] 鱼 Fish8 670EPA ECOTOX
续表3抗生素Antibiotics受试生物MicroorganismLC50或EC50/(mg·L-1)毒性数据来源Toxicity data sourceFO水藻 Algae1 128[17] 水蚤 Daphnia1 290EPA ECOTOX绿藻 Green algae1 670EPA ECOTOX鱼 Fish13 600EPA ECOTOXCZO水华鱼腥藻 A. flosaquae0.004[28] 赫氏双孢子虫 Geminocystis herdmanii0.005[28] 圆柱藻 Anabaena cylindrica0.018[28] 纤细蓝藻 Cyanobium gracile0.051[28] 鱼 Fish2 370 000EPA ECOTOX
(3)阈值计算和生态风险表征
根据SSD曲线中累计函数为5%时对应的浓度对数值计算出HC5,通过风险商值法(RQ)进行表征,计算公式为:
RQ=MEC/PNEC
PNEC=HC5/AF
式中:MEC、PNEC仍分别为环境中的实际检出浓度(ng·L-1)和无效应浓度(ng·L-1);AF表示评价因子,取值范围为1~5,保守评估取值为5。风险类型的划分与传统的单物种测试评估因子法一致:RQ>1为高风险,0.1≤RQ<1为中等风险,0.01≤RQ<0.1为低风险,RQ<0.01无风险[37]。
采用Excel对数据进行统计分析,用Excel、Origin和ArcGIS 10.6做图。
河水中的各类目标抗生素的浓度与检出率如表4所示。由表4可知,滏阳河水中共检出8种抗生素,检出范围为ND~205 ng·L-1,CFC、CFM未检出。磺胺类的3种抗生素(SDZ、SMX和TMP)以及喹诺酮类的CIP、NOR检出率为100%,其余抗生素检出率在5.56%~33.3%之间。从浓度上看,磺胺类抗生素浓度最高,SDZ、SMX和TMP的平均含量均>90 ng·L-1,其次为NOR(74.4 ng·L-1)、CIP(66.3 ng·L-1),LOM、FO和CZO的平均含量在25 ng·L-1以下;沁河水中共检出7种抗生素,浓度范围为ND~152 ng·L-1,FO、CFC和CFM均未检出。检出率100%的为SDZ和SMX,剩余5种抗生素检出率范围为8.33%~83.3%。平均含量在60 ng·L-1以上的抗生素有SDZ、SMX、TMP和CIP,NOR、LOM和CZO的平均含量均在45 ng·L-1以下。
整体上看,2条河流水中各类抗生素的检出率和平均含量均为磺胺类>喹诺酮类>β-内酰胺类。经分析推测磺胺类抗生素的高检出量是由其易溶于水、难以光降解特性[51-52]联合附近的用药特征[53]共同决定的。β-内酰胺类抗生素检出量低则是因为β-内酰胺环在水中不稳定易发生水解[54],进而促进了β-内酰胺类抗生素的降解。
2条河流沉积物中抗生素浓度与检出率如表5所示,滏阳河沉积物中除β-内酰胺类的3种抗生素(CZO、CFC和CFM)未检出外,其余7种抗生素均有检出,其中NOR和CIP的检出率为100%,剩余的5种抗生素检出率在60%~90%之间。沁河沉积物中共检出6种目标抗生素,β-内酰胺类的3种抗生素和FO均未检出。检出率最高的为SDZ(100%)和CIP(100%),SMX、TMP和NOR的检出率为60%~80%。LOM虽被检出,但检出率仅为30%;从含量上看,滏阳河抗生素浓度范围为ND~57.0 ng·g-1,平均含量最高的为NOR(30.7 ng·g-1),其次为CIP(24.0 ng·g-1),其余抗生素均在20 ng·g-1以下。沁河沉积物中仅CIP的平均含量高于20 ng·g-1,其余抗生素均低于15 ng·g-1。
对比发现沉积物中抗生素的检出种类基本与水样一致,但经相关研究发现喹诺酮类抗生素具有较大的吸附系数,更容易吸附在沉积物中[55-56],所以喹诺酮类抗生素为沉积物中的优势种类而非在水中含量较高的磺胺类抗生素。
抗生素时空分布图如图2所示。从冬夏两季的抗生素含量上看,水样和沉积物冬季的抗生素总浓度明显高于夏季,这与Li等[53]的研究结果相似,很可能是由冬季流感造成抗生素类药物使用量增大导致的。
表4 河水中各类抗生素浓度与检出率
Table 4 Concentration and detection rate of various antibiotics in river water
抗生素Antibiotics滏阳河Fuyang River沁河Qin River浓度范围/(ng·L-1)Concentration range/(ng·L-1)平均含量/(ng·L-1)Average content/(ng·L-1)检出率/%Detection rate/%浓度范围/(ng·L-1)Concentration range/(ng·L-1)平均含量/(ng·L-1)Average content/(ng·L-1)检出率/%Detection rate/%磺胺类SulfonamidesSDZ42.5~20598.510038.4~13876.2100SMX42.6~16993.910058.6~13378.1100TMP32.2~19694.4100ND~15270.483.3平均值 Mean32.2~20595.6100ND~13874.994.4喹诺酮类QuinolonesCIP33.5~13266.3100ND~11264.983.3NOR30.0~16874.4100ND~12643.066.7LOMND~68.813.833.3ND~57.813.433.3FOND~45.220.227.8NDND0平均值MeanND~16843.765.3ND~12630.345.8β-内酰胺类β-actamsCZOND~33.23.695.56ND~30.25.048.33CFCNDND0NDND0CFMNDND0NDND0平均值MeanND~33.21.231.85ND~30.21.682.78
注:平均值对应数据为各类抗生素的整体检出浓度和平均含量与检出率的均值。
Note: The corresponding data of “Mean” is the overall detection concentration, average content and average detection rate of various antibiotics.
表5 沉积物中各类抗生素浓度与检出率
Table 5 Concentration and detection rate of various antibiotics in sediments
抗生素Antibiotics滏阳河Fuyang River沁河Qin River浓度范围/(ng·g-1)Concentration range/(ng·g-1)平均含量/(ng·g-1)Average content/(ng·g-1)检出率/%Detection rate/%浓度范围/(ng·g-1)Concentration range/(ng·g-1)平均含量/(ng·g-1)Average content/(ng·g-1)检出率/%Detection rate/%磺胺类SulfonamidesSDZND~27.115.680.06.68~27.311.9100SMXND~25.313.390.0ND~12.37.2680.0TMPND~20.210.280.0ND~23.910.360.0平均值MeanND~27.112.9983.3ND~27.39.8480.0喹诺酮类QuinolonesCIP5.89~55.424.01006.25~36.620.6100NOR10.2~48.930.7100ND~28.814.580.0LOMND~57.014.360.0ND~14.63.1330.0FOND~16.57.7660.0NDND0平均值MeanND~57.019.280.0ND~36.69.5652.5β-内酰胺类β-actamsCZONDND0NDND0CFCNDND0NDND0CFMNDND0NDND0平均值MeanNDND0NDND0
注:平均值对应数据为各类抗生素整体检出浓度范围、平均含量和平均检出率。
Note: The corresponding data of “Mean” are the overall detection concentration range, average content and average detection rate of various antibiotics.
图2 抗生素在水样(a)和沉积物中(b)的时空分布图
注:S表示夏季;W表示冬季。
Fig. 2 The temporal and spatial distribution of antibiotics in water samples (a) and sediments (b)
Note: S stands for summer; W stands for winter.
从图2(a)中对比2条河流的抗生素污染状况发现,滏阳河流域因交通、商业发达,人口分布密集,水体受人类活动影响更大[57],所以在残留的抗生素种类和含量上均高于沁河。在F3处河水中抗生素的浓度有所上升,结合采样点分布图得知F3采样点为邯山区滏阳公园附近,地处邯郸市老城区,排水设施老旧,人口密度大,因此推测此处是因人类活动的增加以及生活污水的不合理排放导致水中抗生素浓度的升高。滏阳河下游的F7处因沁河来水的冲淡作用,抗生素的含量有明显的下降。对于贯穿整个市区的滏阳河来说,出市断面F9处的抗生素的种类与含量与入市断面F1处相比显著增加,说明了此城市河流对下游海河流域的水环境中抗生素污染问题起到了加重的作用。
Guo等[58]通过对凉水河13个采样点的抗生素进行检测分析后发现,在水体和沉积物中检测到抗生素的总浓度都在污水处理厂排放的下游有所增加。但本研究显示,冬夏两季的抗生素浓度峰值出现在了F6和Q4这2点而非距离污水处理厂补水点下游最近的F5和Q3点。为分析其中的原因,进一步对采样点进行了聚类分析(图3)。对采样点进行分类发现,冬夏两季的水样中F5和Q3点与其上游的F4和Q2点为一类,从一定程度上体现了污水处理厂出水点附近的上下游抗生素浓度并无明显变化。在F5和Q3下游的F6和Q4处抗生素含量有了明显的上升,这种情况可能是由污水处理厂出水污染物扩散造成的。在研究污水处理厂出水对下游水体影响时需注意采样点的距离问题。
由图2(b)可知,滏阳河沉积物中各类抗生素的峰值均出现在了水流流速缓慢的F6点,沁河沉积物中抗生素浓度最高点出现在Q3附近。结合当地水流状态及吸附动力学[59]分析沉积物中的抗生素含量可能受水利条件的影响较大。水流速度小的F6和Q3区域水力停留时间更长,沉积物对抗生素的吸附量更大。吴天宇等[60]在对赤水河流域的污染特征研究中也得出了相同的结果。
已知10种典型抗生素中在2条河流中共检出8种,其中检出率>30%的有6种(SDZ、TMP、SMX、NOR、CIP和LOM),故重点考察这6种抗生素在北方地区的2条河流与我国南方以及国外地区的城市河流中的浓度差异,如表6所示。
图3 采样点聚类图
Fig. 3 Cluster map of sampling points in winter and summer
SDZ与TMP为兽医最常用的组合药物,在邯郸市滏阳河和沁河中,这2种抗生素的检出含量远高于珠江广州段,这可能与邯郸地区较为发达的养殖业以及相对缺乏的污染治理设施有关[66]。SMX在河流中的含量除我国香港外,略低于国内其他南方地区的城市河流,但因巴西的瓜伊巴河流域有多家大型医院分布,并且城市中还存在着污水管道与雨水管道非法连接的情况,导致了巴西的城市河流中此类抗生素的含量远高于邯郸地区的滏阳河和沁河[64]。而NOR作为常用的人用抗生素,在人口分布密集的地区往往检出量更大,因此滏阳河中此类抗生素的含量和检出率高于沁河、珠江和南明河。由于印度的穆西河接收制药厂废水,NOR、CIP和LOM的浓度水平明显高于其他城市河流;除印度的穆西河外,滏阳河与沁河中CIP的浓度均高于参比的其他城市河流。LOM在滏阳河和沁河的最高含量甚至高于美国兰辛的污水处理厂出水[65]。通过与国内南方城市河流及国外城市河流的对比发现,此研究中的北方城市河流中的磺胺类以及喹诺酮类的抗生素处于较高的污染水平。
由于未检出CFC和CFM,故对剩余8种抗生素进行了生态风险评估。根据以单物种测试为基础的评估因子法计算出的RQ值绘制的风险评估图如图4所示,由图4可知,参与评估的8种抗生素中有7种存在生态风险,其中有4种抗生素表现为中高风险。喹诺酮类抗生素的生态风险最高,CIP在冬夏季的2条城市河流中的RQ值均在5.0以上,对当地的敏感性生物产生了严重的威胁。LOM和NOR为中等风险,仅FO表现为无风险;磺胺类抗生素中SMX表现为中等生态风险,其余2种抗生素(SDZ和TMP)表现为低风险或无风险。β-内酰胺类抗生素只有CZO在冬季水体中检出,表现为低生态风险。
由于风险评估方式不具有统一性,为使评估结果更加准确,本研究添加了SSD法进一步对抗生素的生态风险作出了评估。8种抗生素的SSD曲线如图5所示,根据曲线中累计概率为0.05时对应的浓度对数值可计算出HC5的抗生素浓度值,进而推算出RQ。SSD法以及以单物种测试为基础的评估因子法计算出的风险商值从大到小的排序结果如表7所示。
表6 国内外部分城市河流抗生素污染水平
Table 6 Antibiotic pollution levels in rivers of some cities at home and abroad
城市河流Urban rivers抗生素浓度/(ng·L-1)Antibiotic concentration/(ng·L-1)SDZTMPSMXNORCIPLOM文献Literature滏阳河,中国邯郸市Fuyang River, Handan, ChinaMax20519616916713268.8Mean98.594.493.974.466.313.8Freq/%10010010010010033.3本文This study沁河,中国邯郸市Qin River, Handan, ChinaMax13815213212613257.8Mean76.270.378.143.064.913.4Freq/%10083.310066.783.333.3本文This study珠江,中国广州Pearl River, Guangzhou, ChinaMax13.727.421018.930.5NDMean6.716.6524.95.735.35NDFreq/%1001001009.3620[61]南明河,中国贵阳Nanming River, Guiyang, ChinaMax——23813335.5—Mean——116307.65—Freq/%——100100100—[12]黄浦江,中国上海Huangpu River, Shanghai, ChinaMax———ND<9.33—Freq/%———07.9—[14]元朗、锦田、城门河,中国香港Yuen Long, Kam Tin and Shing Mun River, Hong Kong, ChinaMax——1523468—Freq/%——1001070—[62]穆西河,印度Musi River, IndiaMax———251 1305 528 90010 320Mean———69 774789 1425 608Freq/%———100100100[63]瓜伊巴河,巴西Guaiba River, BrazilMax——572———Mean——458———Freq/%——100———[64]红塞德尔河,美国Red Seidel, USAMax———<45<19<41[65]格兰德河,美国Rio Grande, USAMax———<45<19<41[65] 佩托斯基河,美国Petoskey River, USAMax———<45<19<41[65]底特律河,美国Detroit River, USAMax———<45<19<41[65]
注:—表示无数据;ND表示未检出;Max表示最大值;Mean表示平均值;Freq表示检出率。
Note: — means no data; ND means not detected; Max means maximum; Freq means detection frequency.
基于SSD法的生态风险评估显示,夏季水中所有抗生素均表现为无生态风险,冬季2条河流中仅有CZO和LOM存在风险。其中LOM的生态风险在2种评估方法中均较高,有研究表明,LOM与CIP等喹诺酮类抗生素相比对生物体具有更高的急性毒性[67],同时LOM在有阳光光照的条件下还会产生光毒性,造成细胞损伤[68],所以即使其在水体中存在的浓度较低也会引起较高的生态风险。对比2
图4 抗生素风险评估图
Fig. 4 Antibiotic risk assessment chart
抗生素Antibiotics拟合函数Fitting functionsR2HC5/(mg·L-1)SDZGompertz0.9980.142 SMXGompertz0.9820.080 TMPExponential0.9802.636 CIPGompertz0.9750.197 NORLogistic0.9589.594 LOMGompertz0.9920.023 FOGompertz0.995939.7 CZOGompertz0.9720.001
图5 8种抗生素对水生生物急性毒性的物种敏感度分布(SSD)曲线
Fig. 5 The species sensitivity distribution (SSD) curves of 8 kinds of antibiotics acute toxicity to aquatic organisms
种方法进行的生态风险排序发现SSD法评估的抗生素的生态风险显著降低,这是由于SSD法与单一物种测试法相比增加了水环境中营养级更高的生物,增强了对抗生素的抵抗能力,更能反映生态系统的真实情况[69]。在SSD法评估中水中含量较多的磺胺类抗生素风险值也较大,而在传统单一的敏感物种测试评估法中生态风险较高的则为喹诺酮类抗生素。究其原因是传统的单一物种测试法更关注于低营养级的敏感性生物,喹诺酮类抗生素因有抗菌谱广、药效强的特点[70],所以即使在水中的含量较低也会对敏感的低营养级水生生物表现出明显的抑杀作用。
表7 抗生素生态风险排序
Table 7 Antibiotic ecological risk ranking
单物种测试法(RQ)排序Single species test (RQ) rankingSSD法(RQ)排序SSD method (RQ) ranking夏季滏阳河Fuyang River in summer夏季沁河Qin River in summer冬季滏阳河Fuyang River in winter冬季沁河Qin River in winter 夏季滏阳河Fuyang River in summer夏季沁河Qin River in summer冬季滏阳河Fuyang River in winter冬季沁河Qin River in winter CIP(5.138)CIP(5.849)CIP(7.779)CIP(6.604)LOM(0.0090)LOM(0.0070)CZO(0.1203)CZO(0.1095)NOR(0.419)NOR(0.313)NOR(0.762)NOR(0.574)SMX(0.0065)SMX(0.0049)LOM(0.015)LOM(0.0126)LOM(0.389)LOM(0.304)LOM(0.649)LOM(0.545)SDZ(0.0040)SDZ(0.0041)SMX(0.0106)SMX(0.0083)SMX(0.383)SMX(0.287)SMX(0.626)SMX(0.491)CIP(0.0022)CIP(0.0025)SDZ(0.0072)SDZ(0.0049)SDZ(0.051)SDZ(0.053)SDZ(0.093)CZO(0.074)TMP(0.0002)TMP(0.0001)CIP(0.0034)CIP(0.0029)TMP(0.006)TMP(0.003)CZO(0.081)SDZ(0.063)NOR(0)NOR(0)TMP(0.004)TMP(0.0003)FO(-)FO(-)TMP(0.012)TMP(0.010)FO(-)FO(-)NOR(0.0001)NOR(0.0001)CZO(-)CZO(-)FO(0)FO(-)CZO(-)CZO(-)FO(0)FO(-)
注:-表示抗生素未检出,未计算风险商值;( )内为各类抗生素所对应的风险商值(RQ)。
Note: - means no data, and risk quotient is not calculated; ( ) is the risk quotient (RQ) value of various antibiotics.
目前有关生态风险评价的方法不具有统一性,参与毒性试验的物种不够丰富,污染物对生态环境造成的风险极有可能被低估。SSD法相较于传统的风险商值法,可充分利用已有的多营养级多物种毒性数据,即充分运用了所有有效信息,所以更能反映抗生素对生态系统的真实影响情况[69]。传统的单一物种测试评估法更多关注于水环境中的营养级较低的敏感生物,在研究抗生素对水环境的长久作用下产生的潜在生态风险上有一定意义。2种风险评价结果显示大部分抗生素处于低风险和无风险水平,但值得注意的是低浓度的抗生素仍会对水中微生物造成选择性压力,促进抗性基因的形成和积累,对水生态环境产生潜在的威胁。其中LOM在2条北方城市河流中存在的生态风险普遍较高,有关北方地区的城市河流中LOM抗生素污染问题应得到重视。
本文针对北方地区城市河流中的10种典型抗生素从浓度水平、时空分布特征以及产生的生态风险等方面进行了探究,得出以下结论。
(1)滏阳河与沁河水中分别检出8种和7种抗生素,浓度范围分别为ND~205 ng·L-1和ND~152 ng·L-1,2条河流中磺胺类抗生素检出率与平均含量最高,其次为喹诺酮类、β-内酰胺类;沉积物中分别检出7种和6种抗生素,检出浓度范围分别为ND~57.0 ng·g-1和ND~36.6 ng·g-1。检出率较高的为喹诺酮类的CIP和NOR(80%~100%),磺胺类居中(60%~100%),LOM检出率最低(30%~60%),FO仅在滏阳河中检出(60%),β-内酰胺类3种抗生素未在沉积物中检出。
(2)水中抗生素在污水处理厂下游以及人类活动频繁地区有所增加,沉积物中抗生素含量在水流速度小的地区出现峰值。总体上呈现冬季高于夏季,出市断面高于入市断面,滏阳河高于沁河的空间分布特征。
(3)与我国南方地区以及国外城市河流相比,此研究中的北方城市河流中的磺胺类和喹诺酮类的抗生素处于较高的污染水平。
(4)单物种测试为基础的生态风险评估显示SMX、CIP、NOR和LOM处于中高风险水平,其中CIP最为严重,RQ值均在5.0以上。SSD法则显示大部分抗生素处于无生态风险水平,但2种风险评价结果均表明LOM在2条北方城市河流中存在较高生态风险,有关北方地区的城市河流中LOM抗生素污染问题应得到重视。
[1] Böger B, Surek M, Vilhena R O, et al. Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil [J]. Journal of Hazardous Materials, 2021, 402: 123448
[2] Valdés M E, Santos L H M L M, Rodríguez Castro M C, et al. Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA) [J]. Environmental Pollution, 2021, 269: 116133
[3] Da Le N, Hoang A Q, Hoang T T H, et al. Antibiotic and antiparasitic residues in surface water of urban rivers in the Red River Delta (Hanoi, Vietnam): Concentrations, profiles, source estimation, and risk assessment [J]. Environmental Science and Pollution Research International, 2021, 28(9): 10622-10632
[4] Alder A, McArdell C, Golet E, et al. Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during wastewater treatment and in ambient waters in Switzerland [J]. ACS Symposium Series, 2001, 791: 56-69
[5] Lindsey M E, Meyer T M, Thurman E M. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry [J]. Analytical Chemistry, 2001, 73(19): 4640-4646
[6] 赵富强, 高会, 张克玉, 等. 中国典型河流水域抗生素的赋存状况及风险评估研究[J]. 环境污染与防治, 2021, 43(1): 94-102
Zhao F Q, Gao H, Zhang K Y, et al. Occurrence and risk assessment of antibiotics in typical river basins in China [J]. Environmental Pollution & Control, 2021, 43(1): 94-102 (in Chinese)
[7] Peng Q C, Song J M, Li X G, et al. Biogeochemical characteristics and ecological risk assessment of pharmaceutically active compounds (PhACs) in the surface seawaters of Jiaozhou Bay, North China [J]. Environmental Pollution, 2019, 255(Pt 1): 113247
[8] Ding H J, Wu Y X, Zhang W H, et al. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China [J]. Chemosphere, 2017, 184: 137-147
[9] 张慧, 郭文建, 刘绍丽, 等. 南四湖和东平湖表层水体中抗生素污染特征和风险评价[J]. 环境化学, 2020, 39(12): 3279-3287
Zhang H, Guo W J, Liu S L, et al. Contamination characteristics and risk assessment of antibiotics in surface water of Nansi Lake and Dongping Lake [J]. Environmental Chemistry, 2020, 39(12): 3279-3287 (in Chinese)
[10] Carvalho I T, Santos L. Antibiotics in the aquatic environments: A review of the European scenario [J]. Environment International, 2016, 94: 736-757
[11] 高俊敏, 舒心, 侯先宇, 等. 村镇尺度水土环境中抗生素的污染特征及源解析[EB/OL]. (2021-07-07) [2021-09-17]. https://doi.org/10.19674/j.cnki.issn1000-6923.20210706.015
[12] 王娅南, 彭洁, 黄合田, 等. 贵阳市城市河流典型抗生素的分布特征[J]. 环境化学, 2018, 37(9): 2039-2048
Wang Y N, Peng J, Huang H T, et al. Distribution characteristics of typical antibiotics in urban rivers of Guiyang City [J]. Environmental Chemistry, 2018, 37(9): 2039-2048 (in Chinese)
[13] Wang G G, Zhou S H, Han X K, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing City, Southwest China [J]. Journal of Hazardous Materials, 2020, 389: 122110
[14] Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China [J]. Chemosphere, 2011, 82(6): 822-828
[15] Li Y, Zhang L Y, Liu X S, et al. Ranking and prioritizing pharmaceuticals in the aquatic environment of China [J]. The Science of the Total Environment, 2019, 658: 333-342
[16] Qiu W H, Sun J, Fang M J, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community [J]. The Science of the Total Environment, 2019, 653: 334-341
[17] 申立娜, 张璐璐, 秦珊, 等. 白洋淀喹诺酮类抗生素污染特征及其与环境因子相关性研究[J]. 环境科学学报, 2019, 39(11): 3888-3897
Shen L N, Zhang L L, Qin S, et al. The occurrence and distribution of quinolones (QNs) and correlation analysis between QNs and physical-chemical parameters in Baiyangdian Lake, North China [J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3888-3897 (in Chinese)
[18] 颦楚. 2019中国医药企业品牌影响力排行榜[J]. 互联网周刊, 2019(23): 44-47
Pin C. 2019 Chinese pharmaceutical enterprise brand influence ranking [J]. China Internet Week, 2019(23): 44-47 (in Chinese)
[19] 张旭, 王雅静, 赵志强, 等. 华北地区部分河流中典型抗生素的分布特征及来源分析[J]. 环境监测管理与技术, 2020, 32(5): 14-17
Zhang X, Wang Y J, Zhao Z Q, et al. Distribution characteristics and source analysis of typical antibiotics in some rivers in North China [J]. The Administration and Technique of Environmental Monitoring, 2020, 32(5): 14-17 (in Chinese)
[20] 李清雪, 孙王茹, 汪庆. SPE-HPLC测定水中β-内酰胺类、喹诺酮类、磺胺类抗生素[J]. 中国给水排水, 2019, 35(18): 118-122
Li Q X, Sun W R, Wang Q. Determination of β-lactams, quinolones and sulfonamides antibiotics in water by SPE-HPLC [J]. China Water & Wastewater, 2019, 35(18): 118-122 (in Chinese)
[21] Guérit I, Bocquené G, James A, et al. Environmental risk assessment: A critical approach of the European TGD in an in situ application [J]. Ecotoxicology and Environmental Safety, 2008, 71(1): 291-300
[22] Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta, 2006, 69(2): 334-342
[23] Eguchi K, Nagase H, Ozawa M, et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae [J]. Chemosphere, 2004, 57(11): 1733-1738
[24] Ferrari B, Mons R, Vollat B, et al. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? [J]. Environmental Toxicology and Chemistry, 2004, 23(5): 1344-1354
[25] Holten Lützhøft H, Halling-Sørensen B, Jørgensen S E. Algal toxicity of antibacterial agents applied in Danish fish farming [J]. Archives of Environmental Contamination and Toxicology, 1999, 36(1): 1-6
[26] Robinson A A, Belden J B, Lydy M J. Toxicity of fluoroquinolone antibiotics to aquatic organisms [J]. Environmental Toxicology and Chemistry, 2005, 24(2): 423
[27] Backhaus T, Scholze M, Grimme L H. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri [J]. Aquatic Toxicology, 2000, 49(1-2): 49-61
[28] Le Page G, Gunnarsson L, Trznadel M, et al. Variability in cyanobacteria sensitivity to antibiotics and implications for environmental risk assessment [J]. The Science of the Total Environment, 2019, 695: 133804
[29] United States Environmental Protection Agency (US EPA). Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses [R]. Washington DC: US EPA, 1985
[30] United States Environmental Protection Agency (US EPA). Guidelines for ecological risk assessment. EPA/630/R-95/002F [R]. Washington DC: US EPA, 1998
[31] 梁峰. 我国典型流域重金属的风险评价及六价铬水质基准的推导[D]. 南京: 南京大学, 2011: 11-12
Liang F. The ecological risk assessment of heavy metals and the derivation of water quality criteria of hexavalent chromium for typical basins in China [D]. Nanjing: Nanjing University, 2011: 11-12 (in Chinese)
[32] 汪涛, 杨再福, 陈勇航, 等. 地表水中磺胺类抗生素的生态风险评价[J]. 生态环境学报, 2016, 25(9): 1508-1514
Wang T, Yang Z F, Chen Y H, et al. Ecological risk assessment for sulfonamides in surface waters [J]. Ecology and Environmental Sciences, 2016, 25(9): 1508-1514 (in Chinese)
[33] 梁霞, 周军英, 李建宏, 等. 物种敏感度分布法(SSD)在农药水质基准推导中的应用[J]. 生态与农村环境学报, 2015, 31(3): 398-405
Liang X, Zhou J Y, Li J H, et al. Application of species sensitivity distribution (SSD) to derivation of water quality criteria for pesticides [J]. Journal of Ecology and Rural Environment, 2015, 31(3): 398-405 (in Chinese)
[34] Canadian Council of Ministers of the Environment (CCME). A protocol for the derivation of water quality guidelines for the protection of aquatic life [R]. Winnipeg, Manitoba: CCME, 1999
[35] Canadian Council of Ministers of the Environment (CCME). A protocol for the derivation of water quality guidelines for the protection of aquatic life. Canadian environmental quality guidelines [R]. Ottawa: CCME, 2007
[36] National Institute of Public Health and the Environment (RIVM). Guidance document on deriving environmental risk limits in the Netherlands. Report No. 601501012 [R]. Bilthoven: RIVM, 2001
[37] 陈莹, 赵晓光. 西安市典型河流中4种抗生素的生态风险评价[J]. 环境污染与防治, 2021, 43(5): 626-630
Chen Y, Zhao X G. Ecological risk assessment of four antibiotics in typical rivers of Xi’an [J]. Environmental Pollution & Control, 2021, 43(5): 626-630 (in Chinese)
[38] Borecka M, Biak-Bielińska A, Haliński P, et al. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris [J]. Journal of Hazardous Materials, 2016, 308: 179-186
[39] 王作铭, 陈军, 陈静, 等. 地表水中抗生素复合残留对水生生物的毒性及其生态风险评价[J]. 生态毒理学报, 2018, 13(4): 149-160
Wang Z M, Chen J, Chen J, et al. Toxicity to aquatic organisms and ecological risk assessment of antibiotic compound residues in the surface water [J]. Asian Journal of Ecotoxicology, 2018, 13(4): 149-160 (in Chinese)
[40] 赵业, 唐永政, 李秉钧, 等. 四种典型抗生素对刺参幼参的急性毒性研究[J]. 海洋湖沼通报, 2019(2): 132-138
Zhao Y, Tang Y Z, Li B J, et al. Acute toxic effects of four typical antibiotics on juvenile of sea cucumber [J]. Transactions of Oceanology and Limnology, 2019(2): 132-138 (in Chinese)
[41] 刘仁彬, 姜锦林, 张宇峰, 等. 磺胺甲恶唑对斑马鱼胚胎/仔鱼的毒性效应[J]. 环境污染与防治, 2020, 42(3): 310-316
Liu R B, Jiang J L, Zhang Y F, et al. Toxic effects of sulfamethoxazole on zebrafish (Danio rerio) embryo/larva [J]. Environmental Pollution & Control, 2020, 42(3): 310-316 (in Chinese)
[42] 聂湘平, 王翔, 陈菊芳, 等. 三氯异氰尿酸与盐酸环丙沙星对蛋白核小球藻的毒性效应[J]. 环境科学学报, 2007, 27(10): 1694-1701
Nie X P, Wang X, Chen J F, et al. Toxic effects of trichloroisocyanuric acid and ciprofloxacin hydrochloride on a freshwater alga, Chlorella pyrenoidosa [J]. Acta Scientiae Circumstantiae, 2007, 27(10): 1694-1701 (in Chinese)
[43] 连鹏, 葛利云, 邓欢欢, 等. 两种喹诺酮类抗生素对亚心形扁藻的毒性效应研究[J]. 环境科学与管理, 2014, 39(5): 46-48
Lian P, Ge L Y, Deng H H, et al. Toxic effects of two quinolone antibiotics on Platymonas subcordiformis [J]. Environmental Science and Management, 2014, 39(5): 46-48 (in Chinese)
[44] FASS. FASS Allmanhet-Startsida [EB/OL]. (2018-12-04) [2021-10-07]. https: //www.fass.se/LIF/startpage/
[45] 房英春, 齐跃, 李莹, 等. 盐酸环丙沙星、恩诺沙星和诺氟沙星对孔雀鱼急性毒性试验研究[J]. 沈阳大学学报: 自然科学版, 2012, 24(3): 15-17
Fang Y C, Qi Y, Li Y, et al. Acute toxicity experience to guppy with ciprofloxacin HCl, enrofloxacin and norfloxacin [J]. Journal of Shenyang University: Natural Science, 2012, 24(3): 15-17 (in Chinese)
[46] 施文杰, 王长友, 杨锐. 诺氟沙星对盐生杜氏藻、新月菱形藻和小球藻的生态毒性效应[J]. 海洋环境科学, 2019, 38(1): 1-6
Shi W J, Wang C Y, Yang R. Effects of norfloxacin on Dunaliella salina, Nitzschia closterium f. minutissima and Chlorella vulgaris [J]. Marine Environmental Science, 2019, 38(1): 1-6 (in Chinese)
[47] 鹿金雁. 叔丁基对羟基茴香醚和诺氟沙星对水生生物的毒性效应[D]. 广州: 暨南大学, 2007: 1
Lu J Y. Toxic effects of butylated hydroxyanisole and norfloxacin to aquatic organsims [D]. Guangzhou: Jinan University, 2007: 1 (in Chinese)
[48] 汪皓琦, 董玉瑛, 汪灵伟, 等. 4种喹诺酮类抗生素对发光菌毒性作用研究[J]. 生态毒理学报, 2017, 12(3): 453-459
Wang H Q, Dong Y Y, Wang L W, et al. The toxicity of four quinolones to Photobacterium phosphoreum [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 453-459 (in Chinese)
[49] 蔡梦婷, 侯国权, 奚豪, 等. 典型抗生素与重金属铜复合暴露对淡水绿藻和斑马鱼的联合毒性[J]. 浙江树人大学学报: 自然科学版, 2018(2): 11-15
Cai M T, Hou G Q, Xi H, et al. Combined toxicity of co-exposure of typical antibiotic and heavy metal copper on freshwater green algae and zebrafish [J]. Journal of Zhejiang Shuren University: Natural Science Edition, 2018(2): 11-15 (in Chinese)
[50] Pfizer Inc. Pfizer-Lomefloxacin Hydrochloride Tablets. Material safety data sheet [EB/OL]. (2018-12-20) [2021-11-11]. http://www.pfizer.com
[51] Zheng S L, Qiu X Y, Chen B, et al. Antibiotics pollution in Jiulong River Estuary: Source, distribution and bacterial resistance [J]. Chemosphere, 2011, 84(11): 1677-1685
[52] Boreen A L, Arnold W A, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups [J]. Environmental Science & Technology, 2004, 38(14): 3933-3940
[53] Li W H, Shi Y L, Gao L H, et al. Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China [J]. Chemosphere, 2013, 92(4): 435-444
[54] Hou J P, Poole J W. β-lactam antibiotics: Their physicochemical properties and biological activities in relation to structure [J]. Journal of Pharmaceutical Sciences, 1971, 60(4): 503-532
[55] Liu X H, Lu S Y, Guo W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. The Science of the Total Environment, 2018, 627: 1195-1208
[56] Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China [J]. Journal of Hazardous Materials, 2008, 151(2-3): 833-839
[57] 王正文. 邯郸市滏阳河综合治理初探[J]. 价值工程, 2011, 30(19): 317
Wang Z W. Exploration on comprehensive treatment of Fuyang River in Handan City [J]. Value Engineering, 2011, 30(19): 317 (in Chinese)
[58] Guo X Y, Feng C H, Zhang J H, et al. Role of dams in the phase transfer of antibiotics in an urban river receiving wastewater treatment plant effluent [J]. The Science of the Total Environment, 2017, 607-608: 1173-1179
[59] 杨宇轩, 徐瑞皎, 冯启言, 等. 3种喹诺酮类抗生素在骆马湖饮用水源地沉积物上的吸附特征[J]. 环境污染与防治, 2020, 42(6): 717-722
Yang Y X, Xu R J, Feng Q Y, et al. Adsorption characteristics of three quinolone antibiotics on sediment from drinking water source of Luoma Lake [J]. Environmental Pollution & Control, 2020, 42(6): 717-722 (in Chinese)
[60] 吴天宇, 李江, 杨爱江, 等. 赤水河流域水体抗生素污染特征及风险评价[J]. 环境科学, 2022, 43(1): 210-219
Wu T Y, Li J, Yang A J, et al. Characteristics and risk assessment of antibiotic contamination in Chishui River Basin, Guizhou Province, China [J]. Environmental Science, 2022, 43(1): 210-219 (in Chinese)
[61] 周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险[J]. 生态环境学报, 2017, 26(6): 1034-1041
Zhou Z H, Zhao J L, Wei X D, et al. Co-occurrence and ecological risk of antibiotics in surface water of Guangzhou section of Pearl River [J]. Ecology and Environmental Sciences, 2017, 26(6): 1034-1041 (in Chinese)
[62] Selvam A, Kwok K, Chen Y M, et al. Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong [J]. Environmental Science and Pollution Research International, 2017, 24(10): 9058-9066
[63] Gothwal R, Shashidhar. Occurrence of high levels of fluoroquinolones in aquatic environment due to effluent discharges from bulk drug manufacturers [J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21(3): 1-8
[64] Jank L, Hoff R B, Costa F J D, et al. Simultaneous determination of eight antibiotics from distinct classes in surface and wastewater samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionisation mass spectrometry [J]. International Journal of Environmental Analytical Chemistry, 2014, 94(10): 1013-1037
[65] Nakata H, Kannan K, Jones P D, et al. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection [J]. Chemosphere, 2005, 58(6): 759-766
[66] 栗萍. 邯郸市畜禽养殖业污染现状及减排措施分析[J]. 中国农业信息, 2013(7): 144
[67] 崔建新, 刘玉荣, 赵小凤, 等. 5种喹诺酮类药急性毒性实验[J]. 中国医院药学杂志, 2001, 21(11): 680
Cui J X, Liu Y R, Zhao X F, et al. Acute toxicity experiment of five quinolones [J]. Chinese Journal of Hospital Pharmacy, 2001, 21(11): 680 (in Chinese)
[68] 顾玉英, 邓湘平. 喹诺酮类药物的光毒性反应及原因分析[J]. 现代医药卫生, 2005, 21(19): 2610
[69] Forbes V E, Calow P. Species sensitivity distributions revisited: A critical appraisal [J]. Human and Ecological Risk Assessment: An International Journal, 2002, 8(3): 473-492
[70] 蔡立红, 阮姝楠, 郭晓红. 180例喹诺酮类药品的不良反应临床分析[J]. 中国临床药理学杂志, 2016, 32(8): 736-737
Cai L H, Ruan S N, Guo X H. Clinical analysis on 180 cases of quinolone drugs on adverse drug reactions [J]. The Chinese Journal of Clinical Pharmacology, 2016, 32(8): 736-737 (in Chinese)
(Corresponding author), E-mail: liqingxue_610@ 126.com
# 共同通讯作者(Co-corresponding author), E-mail: wangqing@hebeu.edu.cn