非抗生素类新污染物影响质粒携带的抗生素抗性基因(ARGs)水平转移研究进展

傅欣玥1,2,杨晓波2,邱志刚2,1,*

1. 上海海洋大学海洋生态与环境学院,上海 201306

2. 军事科学院军事医学研究院环境医学与作业医学研究所,天津 300050

摘要:人们通常认为抗生素的选择压力是造成抗生素抗性基因快速扩散的原因,但是越来越多的研究表明环境中非抗生素类新污染物也能够造成抗生素抗性基因快速扩散。本文对非抗生素类新污染物影响质粒携带抗性基因水平转移规律和机制研究进展进行了归纳总结。目前的研究大多集中在内分泌干扰物、药品及个人护理产品以及纳米材料影响R质粒携带抗生素抗性基因水平转移,相关机制主要关注非抗生素类新污染物对活性氧、应激反应以及细胞膜通透性的影响。持久性有机污染物影响质粒携带抗性基因水平转移规律以及非抗生素类新污染物对其他质粒携带的抗生素抗性基因水平转移规律和其他类型的机制可以作为未来的研究方向。

关键词:抗生素抗性基因;水平转移;质粒;新污染物

抗生素由于可以抑制微生物生长或生存,自20世纪被发现以来就广泛应用于医药、畜牧以及养殖等行业[1-2]。由于过度和不当使用以及不完全代谢,抗生素通过污水处理厂以及垃圾渗滤液等方式进入环境中,导致环境中出现耐抗生素细菌(antibiotic resistance bacteria, ARBs)和抗生素抗性基因(antibiotic resistance genes, ARGs)[3-4]。到目前为止,人们已经从地表水以及地下水、自来水、瓶装水、水井、海湾以及河流湖泊中检测到ARBs和ARGs[4-9]。ARGs的快速扩散对人类社会的经济甚至生命安全带来极大的挑战[10-11]

经过几十年的研究发现,ARBs以及ARGs的产生主要通过自然选择产生基因突变或者通过水平转移。基因突变的概率较低且不稳定,ARBs以及ARGs的产生主要是通过水平转移[12]。水平转移是指基因跨越细菌之间的种属障碍,在同种属或不同种属的不同个体之间转移的现象[13]。水平转移的发生需借助可移动遗传元件(mobile genetic elements, MGEs)(包括质粒、噬菌体、转座子、整合子等),方式主要为转导、转化和接合[14]。转导是基因借助噬菌体进行转移。由于噬菌体有严格的宿主特异性,即噬菌体吸附位点和受体菌表面受体的分子结构要具有互补性,转导只发生在同种细菌之间[15]。转化是细菌直接吸收环境中游离的DNA。转化的发生需要细菌处于感受态,且还需要环境中存在大量游离的DNA片段,这在自然环境下是较难形成。接合则是借助质粒、转座子以及整合子,在细菌间通过接触形成“接合桥”后进行基因转移[16]。接合转移是目前环境中最常见的水平转移方式。

抗生素在水以及土壤等环境中广泛存在,浓度由ng·L-1到mg·L-1不等,但与环境中较高的ARGs水平不匹配[4,17-18]。由于ARGs可复制且具有环境持久性,其扩散可能是多种环境因素协同作用结果[19]。例如,已有研究人员发现如CO2、PM2.5等环境物质可以促进大肠杆菌属内质粒的转移[20-21],污水处理厂的氯化消毒过程可以影响ARGs的转移[22],用于细菌灭活的等离子体也可以抑制接合转移[23]。最近几十年,全球水环境中出现的大量以化学品为主的新污染物(emerging contaminants, ECs)引起了全社会学者的关注。ECs可分为内分泌干扰物(endocrine disrupting compounds, EDCs)、药品与个人护理产品(pharmaceutical and personal care products, PPCPs)、全氟化合物(perfluorinated compound, PFCs)、溴代阻燃剂(brominated flame retardant, BFRs)、消毒副产物(disinfection by-product, DBPs)、ARGs以及其他污染物。EDCs也被称为环境激素,是外源性有机污染物,可以与体内激素受体接合,影响激素的合成、运输和代谢从而干扰内分泌[24]。PPCPs的概念在1999年第一次提出,包含所有人用与兽用的医药品(包括处方类和非处方类药物以及生物制剂)、化妆品以及其他在PPCPs生产制造中添加的组分(如防腐剂等)[25]。PPCPs被人们广泛应用于生活中,随着多种途径进入水环境[26]。PFCs是一类碳原子连接的氢原子全部被氟原子取代的化合物,具有很高的稳定性,能够经受很强的热、光照、化学作用、微生物作用和高等脊椎动物的代谢作用而难以降解,导致其具有很强的环境持久性,会随食物链的传递在生物机体内富集和放大至相当高的浓度[27]。BFRs主要包括四溴双酚A、六溴环十二烷以及多溴联苯醚三大类,有毒且遇热后容易挥发到周围空气中并随着食物链富集和放大[28]。DBPs,特别是氯化消毒副产物,大多具有致癌或致突变性[29]。其他污染物主要包括纳米材料、微塑料、汽油添加剂、自由基等物质。

事实上,在水环境中,ARGs与其他非抗生素类ECs大量共存[30-31],非抗生素类ECs可能导致了ARGs的快速扩散。近几年的相关研究性文章涌现,但相关的综述性文章较少,尤其是关于影响机制方面的综述。因此,我们试图系统地了解非抗生素类ECs怎样且如何影响ARGs的快速扩散。基于以上背景,本综述旨在总结:(1) 影响了质粒携带的ARGs水平转移的非抗生素类ECs;(2) 非抗生素类ECs影响质粒携带的ARGs水平转移的机制。为从源头上控制ARGs快速扩散提供解决思路,并在ECs环境问题方面给予学者更多的警示。

1 非抗生素类ECs对质粒携带ARGs接合转移的影响(Effect of non-antibiotic ECs on plasmid mediating ARGs conjugation and transfer)

1.1 EDCs对质粒携带ARGs接合转移的影响

人们对EDCs健康效应的关注在其对人体内分泌系统的影响。近年来随着细菌耐药问题的发展,人们开始关注EDCs对ARGs水平转移影响的研究。人工甜味剂作为蔗糖的替代物,广泛应用于食品的各个下属领域。Yu等[32]发现糖精、三氯蔗糖、阿斯巴甜和乙酰磺胺酸钾(即安赛蜜)可以促进不同种属细菌间pMS6198A质粒携带的ARGs的接合转移。Li等[33]的研究也证实了安赛蜜可以促进RP4质粒携带的ARGs在细菌种属内的接合转移。在体系相同但质粒与供受体菌不同的情况下,2位研究者对安赛蜜促进接合转移的最佳浓度有不同的研究结果。前者的最佳浓度为300 mg·L-1而后者的最佳浓度为2.01 mg·L-1。这种差异的形成可能是因为前者使用的是大肠杆菌K12,而后者使用的是DH5α,对安赛蜜的摄入更快。

Li等[34]发现环境污染水平的除草剂(草甘膦、草铵膦和麦草畏)可以促进RP4质粒携带ARGs水平转移。有趣的是,Li等[34]研究发现3种除草剂改变了供体细菌细胞膜渗透性但不影响活性氧的产生。作为除草剂最常见的活性成分,草甘膦也曾被Zhang等[35]的研究证明可以增强质粒携带氨苄青霉素、卡那霉素和四环素抗性基因的水平转移频率。与Li等[34]的研究结果不同的是,Zhang等[35]发现草甘磷处理后活性氧水平有所上调,这可能是因为处理时间相对Li等[34]的研究结果更长。除了除草剂,杀菌剂也是常用的农药之一。早在1999年,Pearce等[36]发现较高浓度的西曲脲可以略微降低接合转移频率而低浓度的聚维酮碘则可以降低10倍。Guo等[37]的研究证明,使用50 μg·L-1的咪鲜胺可以增强RP4质粒水平转移1.82倍。24.4 μg·L-1的二葡萄糖酸氯己定也可以显著增强接合转移频率[38]。但是Wesgate等[39]研究发现,0.002 mg·mL-1二葡萄糖酸氯己定阻止了接合转移。二者都是使用大肠杆菌作为接合实验的受体菌,但Jutkina等[38]使用处理过的污水作为复杂的供体群落而Wesgate等[39]则使用大肠杆菌13P5作为供体菌。

褪黑激素(N-acetyl-5-methoxytryptamine)作为一种神经激素已被Jia等[40]证实可以显著抑制RP4-7质粒的接合转移频率以及抑制携带黏菌素抗性基因mcr-1的不同类型质粒的水平转移。Jia等[40]的研究为接合抑制剂的开发提供了一个新的思路。儿茶酚胺,尤其是其中的去甲肾上腺素仅用生理浓度即可增强体外接合质粒的转移效率[41]。Feng等[42]研究发现双酚类物质在环境相关浓度下可以增强质粒接合转移频率2倍~5倍。在研究过程中,Feng等[42]发现在双酚物质促进接合相关基因的表达时,细胞膜通透性及其相关基因却没有显著的变化,这与其他污染物是不同的。另外,杨雨桐等[43]在用新的接合模型,也即粪肠球菌作为供受体菌,pCF10作为接合质粒时,也发现双酚A可以促进接合转移。并且Yang等[44]研究发现,双酚A的促接合机制是通过信息素而非活性氧。

总的来说,上述提到的人工甜味剂、食品防腐剂、除草剂、儿茶酚胺以及双酚类物质可以促进接合转移,褪黑激素可以抑制接合转移。对于杀菌剂中的EDCs,西曲脲和聚维酮碘可以降低接合转移频率,咪鲜胺可以促进质粒携带的ARGs的接合转移。但对于二葡萄糖酸氯己定对质粒携带的ARGs的接合转移的影响还存在争议。

1.2 PPCPs对质粒携带ARGs接合转移的影响

作为世界上最常见的解热镇痛药之一,对乙酰氨基酚在低浓度时可以显著促进RP4-7质粒以及携带mcr-1或tet(X4)的临床质粒的水平转移,且50 μg·mL-1的对乙酰氨基酚对RP4-7质粒接合转移频率的促进效果最为显著[14]。有趣的是,对乙酰氨基酚只通过影响供体细菌活性氧水平来促进接合转移。常用的抗癫痫药卡马西平分别加速了RP4质粒在种属间以及种属内的接合转移频率12倍以及9倍[45]。氯二甲酚是一种含有苯酚的芳香族有机化合物,广泛用于洗手液、液体肥皂和化妆品等PPCPs中,在环境浓度下可以增强RP4质粒接合转移频率8.45倍~9.51倍[46]。在治疗癌症方面颇有前景的紫杉醇及其衍生物也被证实可以促进RP4-7质粒接合转移频率2倍以及1.3倍[47]。用于牙膏、护肤霜、除臭剂、肥皂和塑料等常用消费品的三氯生也被Lu等[48]发现可以显著提升种属内以及种属间的接合转移频率。常用于抛光剂、洗涤剂、洗发水和清洁剂的三氯卡班可以加速接合频率2.17倍~4.31倍[49]。作为人们生活中常用到的PPCPs,上述提到的物质都能通过诱导应激反应来促进质粒携带ARGs的接合转移频率。也就是说,虽然这些PPCPs都是非抗生素类,但也能产生类似抗生素的对细菌的对抗作用来促进接合转移。总的来说,对PPCPs的相关研究还较少,未来还需多多关注此方面。

最近有一项研究发现,非抗生素药物可以对肠道菌群产生类似抗生素的作用[50]。故而非抗生素类药物是否能通过转化影响ARGs的水平转移引起了学者的注意。Wang等[51]的研究发现非甾体抗炎药布洛芬、萘普生、吉非罗齐、双氯芬酸和普萘洛尔,尤其是吉非罗齐和普萘洛尔在临床浓度就可以促进转化1.9倍~2.4倍。虽然非抗生素类PPCPs对转化有较好的促进效果,但转化频率只在10-6左右。

1.3 纳米材料对质粒携带的接合转移的影响

纳米材料由于其独特的物理及化学性质,被广泛应用于生活中[52]。但由于过度使用,环境中已经积累了相当高浓度的纳米材料,导致细菌生长受到抑制甚至威胁到人与动物的健康[53]。2012年Qiu等[54]首次发现Al2O3纳米颗粒影响RP4、RK2和pCF10质粒ARGs的转移。其中,对于RP4质粒而言,大肠杆菌到沙门氏菌的接合转移频率被提高了200倍,革兰氏阴性菌到革兰氏阳性菌的接合转移频率提高了50倍,大肠杆菌属内转移也提高了100倍。这一研究成果是细菌耐药性研究领域的新发现。2015年,Qiu等[55]还发现纳米二氧化钛抑制细菌生长的同时还促进RP4质粒在大肠杆菌中的接合频率2个数量级。在2021年,Ding等[56]发现纳米Al2O3、TiO2、Fe2O3以及SiO2都能促进携带ARGs的纳米颗粒转化进大肠杆菌K12中,其中纳米Al2O3的效果最好。这一发现说明纳米Al2O3除了通过接合转移还能通过类似转导的转化来促进ARGs的水平转移。

Wang等[57]发现亚致死浓度的ZnO纳米颗粒可以显著增强RP4质粒的接合转移频率。其中,在大肠杆菌菌落中提高了24.3倍,在水生微生物混合群落中增强了8.3倍。同年,Parra等[58]发现在亚抑制浓度下,铜纳米颗粒可以抑制pJP4和pADP1这2种质粒的接合转移频率。一些研究发现金属离子与其相应的纳米金属氧化物在促接合效应上具有差异。这种差异与金属的抗菌能力以及毒理效应有关。例如,Zhang等[59]的研究证明氧化铜纳米颗粒可以促进RP4质粒携带ARGs的转移,并且与铜离子的促进效果相比,相同浓度的CuO纳米颗粒的促进效果更加强。而对于单独的纳米银,Lu等[60]发现,银纳米颗粒和银离子在环境相关浓度和亚致死浓度下都可以促进大肠杆菌的属间转移。在0.1 μg·L-1 Ag纳米颗粒暴露下,RP4质粒的接合转移频率增加了1.8倍,同时1 μg·L-1的Ag+则使接合转移频率增加了2.4倍。此外,Guo和Tian[61]研究了由Ag、TiO2和氧化石墨烯合成的新型纳米复合材料对ARGs转移的影响,发现即使是在高浓度下,它对大肠杆菌属内接合转移的促进效果也可达到1倍~2倍。Yu等[62]研究发现了氧化铈纳米颗粒在1~50 mg·L-1的浓度范围内可以影响RP4质粒在大肠杆菌的属内转移。其中,在相对高的浓度下可以增强接合频率118%~123%,但在低浓度下却抑制22%~26%。对于低浓度出现相反的结果,Yu等[62]主要归因于是活性氧水平下降、胞外聚合物多糖合成以及ATP供应不足造成的。Guo等[37]发现与氧化铜纳米颗粒和咪鲜胺合用使RP4质粒在大肠杆菌中接合转移频率从1.82倍增加到3.61倍。Liu等[63]证实30 nm的Al2O3纳米颗粒可以在不使用热激法的情况下显著促进大肠杆菌到以孢子繁殖的链霉菌的接合转移频率60倍。

Liu等[64]发现硫化纳米级零价铁可以抑制ARGs的传播,影响效果与硫和铁的物质的量的比例有关。并且,Liu等[65]还将硫化钠米零价铁与高级氧化技术相结合来验证硫化钠米零价铁可以抑制质粒传播ARGs。Pu等[66-67]在确定了镉可以增强RP4质粒ARGs的传播后,研究了同时暴露Cd2+和纳米Fe2O3对质粒RP4接合转移的影响。Pu等[66-67]发现,虽然随着纳米Fe2O3浓度的升高镉离子浓度会因被去除而降低,但高浓度的纳米Fe2O3颗粒和镉离子的共同作用可以显著提高RP4质粒的接合转移频率。而这种促接合效应可以通过对材料进行更复杂的处理而改变。Wang等[68-70]研究发现Fe2O3@MoS2、Fe3O4@MoS2以及SDS包覆Fe3O4@MoS2的复合纳米材料能够抑制了RP4-7质粒的接合转移,其中SDS包覆Fe3O4@MoS2复合纳米材料的效果最好。

Li等[71]发现天然闪锌矿纳米颗粒以及它的有效成分硫化锌都可以有效促进大肠杆菌属内接合转移频率。Zhang等[72]调查了97号汽油、93号汽油、轻柴油和船用重柴油中具有纳米级结构的废气颗粒物对ARGs传播的影响,研究结果显示4种汽油和柴油废气颗粒分别促进了2.2倍~5.3倍、1.4倍~2.0倍、2.0倍~5.1倍和1.2倍~2.4倍。周宏瑞等[73]的研究发现纳米二硫化钼可以促进以pCF10为接合质粒的新接合模型的接合转移5倍~8倍。

1.4 其他ECs对质粒携带的接合转移的影响

由于在垃圾渗滤液中含有大量的微塑料和ARGs,Shi等[74]发现50~100 nm的微塑料和200~500 nm的纳米塑料可以促进接合转移。Loo等[75]也发现,微塑料生物膜可以促进弧菌中质粒的转移。Zha等[76]也发现了微/纳米塑料的直径变化可以影响接合转移的增强效果。Yuan等[77]还发现经紫外线老化的聚苯乙烯微塑料可以增强质粒pET29的转移效率5.2倍。微塑料对ARGs转移的促进效果的一个可能的原因是它可以吸附聚集,相对其他环境而言提供了一个更有利于接触的机会。

He等[78]发现典型的DBPs,三氯甲烷和二氯乙腈在低浓度就分别可以促进RP4质粒转移5.5倍和6倍。由于消毒极易导致细菌感受态的形成,Mantilla-Calderon等[79]发现消毒副产物溴乙酸可以促进贝氏不动杆菌的转化频率2倍。尽管接合和转化是2种独立的水平转移机制,但在探索到消毒副产物影响水平转移的机制时,都是活性氧水平方面的变化所调控的。Li等[80]证实了环境自由基可以在10 min以内,将RP4质粒在大肠杆菌中的属内接合转移频率从4.08×10-5降低到1.2×10-8

2 非抗生素类ECs对接合转移影响的机制(Mechanism of the influence of non-antibiotic ECs on conjugation and metastasis)

2.1 活性氧、SOS以及细胞膜通透性

如图1所示,存在环境压力如紫外高温等情况下,对细胞生存有重要作用的活性氧(reactive oxygen species, ROS)水平会升高。为了抵御活性氧的攻击,细菌会通过抗氧化酶等抗氧化系统保护细菌。ROS水平过量至超过细菌的抗氧化能力,便会通过与各种如脂质和蛋白质等大分子反应破坏细胞膜,从而减弱细胞膜的“屏障”并诱导应激(SOS)反应以影响抗性基因转移。一般来说,产生的ROS越多,基因转移效率越高,除非ROS的产生高到对细菌造成过度伤害。

图1 非抗生素类新污染物(ECs)促进接合转移的主要机制
Fig. 1 The main mechanism of nonantibiotic emerging contaminants (ECs) promoting conjugation transfer

由此,对于ECs对接合转移的影响,学者们基本都围绕这一方向。例如,Shi等[74]就发现有吸附作用的微/纳米塑料可以诱导细胞产生ROS并增加了细胞膜的通透性。并且影响程度与诱导时间和表面积大小相关。Jia等[14]也证实对乙酰氨基酚可以诱导ROS、SOS以及细胞膜通透性的改变。这个改变依赖浓度范围,当对乙酰氨基酚浓度超过250 μg·mL-1时,影响效果便会消失。Lu等[60]发现银离子和银纳米离子可以影响如过氧化氢酶、烷基过氧化氢还原酶等抗氧化酶活性来促进接合转移。与Shi等[74]的研究较为一致的是,纳米结构的物理化学性质同样可以促进接合转移的发生。值得注意的是,这种通过ROS促进接合转移的现象可以通过添加活性氧清除剂如硫脲和N-乙酰基-L-半胱氨酸(N-acetyl-L-cysteine, NAC)减弱[14,77]

2.2 能量以及代谢

在各种活性细胞中存在一种高能磷酸化合物——三磷酸腺苷(adenosine triphosphate, ATP),它在水解时会释放大量能量以供细胞使用。在革兰氏阴性菌参与的接合转移中,菌毛运动、酶促反应、DNA合成以及转运质粒等过程都需要ATP供能。

质子动力是膜内外质子浓度(通常以pH的形式表现)差或者电位差所产生的一种驱动力,它可以影响ATP的合成[81]。从这一方面入手,Li等[34]测试发现在磷酸缓冲溶液体系中,胞内pH有显著降低,这证实了除草剂可以通过质子动力来影响质粒转移。同年,Jia等[40]使用荧光染料证明褪黑激素可以通过影响氢离子和钾离子的通量来破坏膜电位。

除了质子动力以外,学者们发现非抗生素类ECs也可以通过影响ATP合成蛋白来影响ATP的合成。Buberg等[82]发现锌和铜可以影响为装配T4SS提供能量的ATP蛋白酶的活性来影响接合转移。Lu等[60]发现银离子和银纳米离子可以影响ATP合成蛋白的表达来加速质粒转移。

作为ATP的辅助因子,镁离子是细胞内最丰富的离子之一,它可以影响包括DNA合成与松弛酶活性的600多种酶促反应[83]。Li等[33]发现,镁离子浓度变化与不同安赛蜜浓度对接合转移的影响趋势一致,并且通过转录组学分析发现转运镁离子的P型ATP酶表达有上调。

ATP除了直接作用于接合转移以外,还影响胞外多糖的合成。细菌分泌的胞外聚合物(extracellular polymeric substances, EPS)主要由多糖、蛋白质和细胞外DNA组成[84]。EPS提取物中蛋白质和多糖的总浓度被认为是EPS的含量,因为这两者是EPS中的主要成分。EPS组成的变化,尤其是多糖,在细胞间黏附中起着重要作用。据报道,EPS多糖与细胞间黏附有关[85]。促进胞外多糖的分泌可以增加细胞间的接触。细胞间接触是ARGs接合转移的前提条件。Yu等[62]发现CeO2可以通过抑制细胞外聚合物物质中多糖的合成而减弱的细胞间接触从而抑制接合转移。Li等[80]发现在环境自由基暴露下,EPS分泌减少可能导致细胞屏障的破坏。Li等[34]发现草甘膦和麦草畏可以显著增加EPS的分泌进而促进接合转移。

2.3 基因调控

表1展示了非抗生素类ECs通过上述机制对基因调控的影响。除了上述机制作用过程中对基因调控产生影响,非抗生素类ECs对接合转移相关基因调控产生的影响也是不可忽略的。如图1所示,对于革兰氏阴性菌,参与接合转移所必需的“接合桥”的构建因子主要由菌毛编码基因、全局调节因子、配对形成系统以及DNA转移复制基因组成。现有研究发现全局调节因子主要由korAkorBtrbA构成,它们负责在接合期间调节质粒的转移、复制和稳定。全局调节基因的下调可以激活配对形成系统,该系统在接合的早期阶段参与形成细胞表面蛋白之间的接合桥。trbBp是该系统的启动子,所以非抗生素类ECs对该基因表达的影响是较为重要的。除此以外,位于质粒上的tra操纵子是编码质粒从供体细胞转运到受体细胞的重要基因[82]。现有研究证明korAkorB基因的抑制表达可以激活trfAp基因,有助于激活复制起点的单链和DNA结合蛋白trfA[54]trfAptrbBp基因的上调有助于接合转移的发生。在配对形成系统中,参与菌毛生成的fim家族以及调节菌毛运动的traG都是不可忽略的。DNA转移复制基因包括3个操纵子和转移起点(oriT),即前导和松弛酶操纵子之间的基因间区域,并且DNA转移复制基因功能参与复杂的转移复制过程的启动。traJ基因的产物,与oriT结合并参与形成松弛体,该松弛体触发环状质粒中的链特异性缺口,由此开始DNA的转移。

表1 非抗生素类ECs对调控基因的影响
Table 1 Effects of non-antibiotic ECs on regulatory genes

基因功能Gene function基因名称Gene name参考文献References外膜蛋白Outer membrane proteinompA, ompC, ompF, ompG, ompL, ompN, ompW, ompX, ompQ, oprG, sfmD, csgF, csgG, yfaZ, uidC, ecnB, slp, ybaY, bamA, bamE, bamD, slp, exbB, exbD, mltF, tolC, slyB, yiaT, yoaF, lanB, ftsH, nfeD[14,33-35,37,40,45,55,60,63-64,69,71-72,76,78]抗氧化酶AntioxidaseahpC, ahpF, gor, sodA, sodB, trxC, trxA, trxB[14,32-33,40,45,60,64,78,80]氧化应激防御系统Oxidative stress defense systemoxyR, dps, sodC, katC, katE, katG, soxS, soxD, soxR, soxG, tpx, treC, ohr, sufB, sufA, sufC, sufD, rpoS, marA, ompR, soxR, soxS, osmC, osmY, hemH[33,40,45,59-60,64,71-72,80]SOS响应基因SOS response genesulA, yedK, yebG, yedR, lexA, dinI, dinD, dinG, dinB, dinF, recA, recF, recR, recO, recB, recN, recJ, recX, hexR, umuD, umuC, uvrA, uvrD, rpoH, rpoD, mukB, radA, ruvB, rcsC, polB, rimK, mutT, ybfE[14,32,37,40,45,60,64,71-72,78,80]细胞膜相关基因Cell membrane related genesopdH, yfaT, yfaQ, yfaA, yiaM, yiaL, yiaA, yiaW, ybaY, oprH, oprI, qmcA, fpvA, fecA, yebY, yebS, yohO, yohC, secM, secF, secG, secA, yajL, yajG, tatE, tatD, tatB, tatA[32,45,60,80]全局调节基因Global regulatory genekorA, korB, trbA[35,40,45,54-55,63,66,69,72,76,78,80]DNA转移复制DNA transfer replicationtraI, traJ, traM, traC, traC1, traC2, traB, traG, trfAp, nikB[32,35,37,40,45,55,60,62,66-67,69-70,72,76,78,80]渗透应激反应Osmotic stress reactionosmB, osmC, osmE, osmF, osmY[33,60,64,78,80]机械力敏感通道Mechanical force sensitive channelmscS, mscK[33,60,78]脂多糖合成Lipopolysaccharide synthesiswaaA, waaB, waaC, waaO, waaP, waaQ, waaR, waaS, waaF, way[33,60]ATP合成ATP synthesisatpA-atpH, mgtA[33-34,60,78,80]配对形成系统Mating pair formationtrbBp, traF[32,35,66-67,69-70,72,76,78,80]菌毛PilitraA, traH, traL, traP, traG, fimB, fimC, fimD, fimG, fimF, fimH, yehD[32-33,37,55,78]菌毛黏附素Fimbriae adhesinecpD, ecpA[32-33]复合物ComplexnuoL, nuoM, nuoF, nuoG, nuoH, sdhD, sdhC, sdhA, frdD, frdC, frdB, frdA[80]Ⅱ型分泌系统Type Ⅱ secretion systemsecB, secD, secG, yajC, yidC, yghD[34]H+转运H+ transportpuuP, proP, betT, gltP[34]内膜蛋白Endometrial proteinhdeD, slp, yhiD, yhiM, tolA, ybgE[32,34,40]脂蛋白以及脂质相关基因Lipoprotein and lipid-related genesLpp, rfaZ, rfaQ, pmrD, htrL, plsX[60]膜融合与修复Membrane fusion and repaircusB, cusC, slab, basS, mdtB, motA, yiaD[34,71]

续表1基因功能Gene function基因名称Gene name参考文献References多糖运输Polysaccharide transportationbglH, chiP, lamB, lptB, lptG, yhjD[34,37]宿主致死Host deathkilA, kilB[40,76]

3 结论与展望(Conclusion and prospect)

ARGs在环境中的扩散不但引起环境生态安全问题,最终还将影响人类健康。因此。ARGs已被定义为典型的新污染物。阐明ARGs在环境中传播过程和机制是控制ARGs快速扩散的前提。越来越多的研究证明了非抗生素类ECs可以影响ARGs的传播。目前的研究发现PPCPs、微塑料以及消毒副产物都能通过类抗生素作用或者吸附作用诱导应激反应促进质粒携带的ARGs水平转移。另外,纳米材料以及EDCs也能影响接合转移。影响的机制包括ROS、SOS、细胞膜通透性、能量、代谢以及相关基因的调控。本篇综述系统的总结了这些研究,为ARGs的控制提供思路,也为接合抑制剂的研究提供方向。同时,也需要引起人们对ECs的治理以及去除工作的重视。

本篇综述也提出了未来需要注意的问题:(1)虽然目前已有许多研究证明非抗生素类ECs影响了ARGs通过接合转移进行传播,但不可否认的是,相关研究依旧不够全面,需要进一步研究更多的非抗生素类ECs以加强相关性;(2) 大部分学者对机制的研究还集中在ROS、SOS以及膜的通透性上,学者们应该还要多关注其他影响机制或者发现新的影响机制;(3)污染物在实验环境下对ARGs的影响已经证实,但缺乏在复杂环境(自然环境)下的研究;(4)目前学者对接合转移的研究还集中在R质粒,对其他类型质粒的研究较为缺乏。

参考文献(References):

[1] Clark M D, Halford Z, Herndon C, et al. Evaluation of antibiotic initiation tools in end-of-life care [J]. The American Journal of Hospice &Palliative Care, 2022, 39(3): 274-281

[2] Efendi R, Sudarnika E, Wibawan I W T, et al. An assessment of knowledge and attitude toward antibiotic misuse by small-scale broiler farmers in Bogor, West Java, Indonesia [J]. Veterinary World, 2022, 15(3): 707-713

[3] 颉亚玮, 於驰晟, 李菲菲, 等. 某市污水厂抗生素和抗生素抗性基因的分布特征[J]. 环境科学, 2021, 42(1): 315-322

Xie Y W, Yu C S, Li F F, et al. Distribution characteristics of antibiotics and antibiotic resistance genes in wastewater treatment plants [J]. Environmental Science, 2021, 42(1): 315-322 (in Chinese)

[4] Lu S, Lin C Y, Lei K, et al. Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in Eastern China [J]. Water Research, 2020, 184: 116187

[5] 李敏, 唐剑锋, 陈利顶, 等. 城郊流域源汇景观格局与水体抗生素的关系[J]. 环境科学, 2020, 41(5): 2264-2271

Li M, Tang J F, Chen L D, et al. Relationship between source-sink landscape pattern and antibiotics in surface water in peri-urban watershed [J]. Environmental Science, 2020, 41(5): 2264-2271 (in Chinese)

[6] Fu C X, Xu B T, Chen H, et al. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiongan New Area, China, and their relationship with antibiotic resistance genes [J]. The Science of the Total Environment, 2022, 807(Pt 2): 151011

[7] Li F F, Chen L J, Bao Y Y, et al. Identification of the priority antibiotics based on their detection frequency, concentration, and ecological risk in urbanized coastal water [J]. The Science of the Total Environment, 2020, 747: 141275

[8] Wang H X, Wang N, Wang B, et al. Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children [J]. Environmental Science &Technology, 2016, 50(5): 2692-2699

[9] Zhang H N, Zhou Y F, Guo S Y, et al. Prevalence and characteristics of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae isolated from rural well water in Taian, China, 2014 [J]. Environmental Science and Pollution Research, 2015, 22(15): 11488-11492

[10] Cho I, Blaser M J. The human microbiome: At the interface of health and disease [J]. Nature Reviews Genetics, 2012, 13(4): 260-270

[11] Hidron A I, Edwards J R, Patel J, et al. NHSN annual update: Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007 [J]. Infection Control and Hospital Epidemiology, 2008, 29(11): 996-1011

[12] Pazda M, Kumirska J, Stepnowski P, et al. Antibiotic resistance genes identified in wastewater treatment plant systems - A review [J]. The Science of the Total Environment, 2019, 697: 134023

[13] 杨凤霞, 毛大庆, 罗义, 等. 环境中抗生素抗性基因的水平传播扩散[J]. 应用生态学报, 2013, 24(10): 2993-3002

Yang F X, Mao D Q, Luo Y, et al. Horizontal transfer of antibiotic resistance genes in the environment [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2993-3002 (in Chinese)

[14] Jia Y Q, Wang Z Q, Fang D, et al. Acetaminophen promotes horizontal transfer of plasmid-borne multiple antibiotic resistance genes [J]. Science of the Total Environment, 2021, 782: 146916

[15] Duckworth D H. “Who discovered bacteriophage?” [J]. Bacteriological Reviews, 1976, 40(4): 793-802

[16] Davison J. Genetic exchange between bacteria in the environment [J]. Plasmid, 1999, 42(2): 73-91

[17] McGowan E. Comment on “Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado” [J]. Environmental Science &Technology, 2007, 41(7): 2651-2652

[18] Lin Z B, Yuan T, Zhou L, et al. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment [J]. Environmental Geochemistry and Health, 2021, 43(5): 1741-1758

[19] Gao H, Zhang L X, Lu Z H, et al. Complex migration of antibiotic resistance in natural aquatic environments [J]. Environmental Pollution, 2018, 232: 1-9

[20] Liao J Q, Huang H N, Chen Y G. CO2 promotes the conjugative transfer of multiresistance genes by facilitating cellular contact and plasmid transfer [J]. Environment International, 2019, 129: 333-342

[21] Xie S S, Gu A Z, Cen T Y, et al. The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes [J]. Science of the Total Environment, 2019, 683: 116-123

[22] Guo M T, Yuan Q B, Yang J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater [J]. Environmental Science &Technology, 2015, 49(9): 5771-5778

[23] Li H, Song R Y, Wang Y Y, et al. Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma [J]. Water Research, 2021, 204: 117630

[24] 宋峙嶙, 李圆圆, 熊忆茗, 等. 内分泌干扰物测试技术和评估体系[J]. 中国环境科学, 2023, 43(5): 2601-2612

Song S L, Li Y Y, Xiong Y M, et al. Testing techniques and assessment systems for endocrine disrupting chemicals [J]. China Environmental Science, 2023, 43(5): 2601-2612 (in Chinese)

[25] Daughton C G. Pharmaceuticals and Personal Care Products in the Environment: Overarching Issues and Overview [M]// Daughton C G, Jones-Lepp T L. Pharmaceuticals and Care Products in the Environment. Washington DC: American Chemical Society, 2001: 2-38

[26] 周培亮, 熊倩, 吴颖琳, 等. 浮萍在PPCPs修复中的应用与机理研究[J]. 生态毒理学报, 2022, 17(5): 128-138

Zhou P L, Xiong Q, Wu Y L, et al. Research advances on application and mechanisms of duckweed in bioremediation of PPCPs [J]. Asian Journal of Ecotoxicology, 2022, 17(5): 128-138 (in Chinese)

[27] 李敏, 蔡凤珊, 秦瑞欣, 等. 重庆市典型行业废水中16种全氟化合物污染特征[J]. 生态毒理学报, 2021, 16(5): 44-58

Li M, Cai F S, Qin R X, et al. Pollution status of sixteen per- and polyfluoroalkyl substances in wastewater of typical industries in Chongqing City [J]. Asian Journal of Ecotoxicology, 2021, 16(5): 44-58 (in Chinese)

[28] 邹义龙, 吴永明, 邓觅, 等. 新型溴代阻燃剂TBB和TBPH的生态毒理研究进展[J]. 生态毒理学报, 2021, 16(2): 72-85

Zou Y L, Wu Y M, Deng M, et al. A review on the ecotoxicology of novel brominated flame retardants TBB and TBPH [J]. Asian Journal of Ecotoxicology, 2021, 16(2): 72-85 (in Chinese)

[29] 魏文哲, 罗家怡, 赵佳焱, 等. 饮用水中新型环状消毒副产物的毒性研究进展[J]. 生态毒理学报, 2021, 16(6): 87-103

Wei W Z, Luo J Y, Zhao J Y, et al. Research progress on toxicity of new cyclic disinfection byproducts in drinking water [J]. Asian Journal of Ecotoxicology, 2021, 16(6): 87-103 (in Chinese)

[30] Meng Y, Liu W Y, Fiedler H, et al. Fate and risk assessment of emerging contaminants in reclaimed water production processes [J]. Frontiers of Environmental Science &Engineering, 2021, 15(5): 104

[31] Chinnaiyan P, Thampi S G, Kumar M, et al. Pharmaceutical products as emerging contaminant in water: Relevance for developing nations and identification of critical compounds for Indian environment [J]. Environmental Monitoring and Assessment, 2018, 190(5): 288

[32] Yu Z G, Wang Y, Lu J, et al. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer [J]. The ISME Journal, 2021, 15(7): 2117-2130

[33] Li Z Q, Gao J F, Guo Y, et al. Enhancement of antibiotic resistance dissemination by artificial sweetener acesulfame potassium: Insights from cell membrane, enzyme, energy supply and transcriptomics [J]. Journal of Hazardous Materials, 2022, 422: 126942

[34] Li X, Wen C, Liu C, et al. Herbicide promotes the conjugative transfer of multi-resistance genes by facilitating cellular contact and plasmid transfer [J]. Journal of Environmental Sciences (China), 2022, 115: 363-373

[35] Zhang H N, Liu J B, Wang L, et al. Glyphosate escalates horizontal transfer of conjugative plasmid harboring antibiotic resistance genes [J]. Bioengineered, 2021, 12(1): 63-69

[36] Pearce H, Messager S, Maillard J Y. Effect of biocides commonly used in the hospital environment on the transfer of antibiotic-resistance genes in Staphylococcus aureus [J]. Journal of Hospital Infection, 1999, 43(2): 101-107

[37] Guo A Y, Zhou Q X, Bao Y Y, et al. Prochloraz alone or in combination with nano-CuO promotes the conjugative transfer of antibiotic resistance genes between Escherichia coli in pure water [J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127761

[38] Jutkina J, Marathe N P, Flach C F, et al. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations [J]. The Science of the Total Environment, 2018, 616-617: 172-178

[39] Wesgate R, Fanning S, Hu Y, et al. Effect of exposure to chlorhexidine residues at “during use” concentrations on antimicrobial susceptibility profile, efflux, conjugative plasmid transfer, and metabolism of Escherichia coli [J]. Antimicrobial Agents and Chemotherapy, 2020, 64(12): e01131-e01120

[40] Jia Y Q, Yang B Q, Shi J R, et al. Melatonin prevents conjugative transfer of plasmid-mediated antibiotic resistance genes by disrupting proton motive force [J]. Pharmacological Research, 2022, 175: 105978

[41] Peterson G, Kumar A, Gart E, et al. Catecholamines increase conjugative gene transfer between enteric bacteria [J]. Microbial Pathogenesis, 2011, 51(1-2): 1-8

[42] Feng M B, Ye C S, Zhang S Q, et al. Bisphenols promote the conjugative transfer of antibiotic resistance genes without damaging cell membrane [J]. Environmental Chemistry Letters, 2022, 20(3): 1553-1560

[43] 杨雨桐, 周宏瑞, 杨晓波, 等. 双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 191-202

Yang Y T, Zhou H R, Yang X B, et al. Bisphenol A promotes conjugative transfer of antibiotic resistance genes mediated by pheromone-responsive plasmid in Enterococcus faecalis [J]. Asian Journal of Ecotoxicology, 2022, 17(1): 191-202 (in Chinese)

[44] Yang Y T, Yang X B, Zhou H R, et al. Bisphenols promote the pheromone-responsive plasmid-mediated conjugative transfer of antibiotic resistance genes in Enterococcus faecalis [J]. Environmental Science &Technology, 2022, 56(24): 17653-17662

[45] Wang Y, Lu J, Mao L K, et al. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera [J]. The ISME Journal, 2019, 13(2): 509-522

[46] Guo Y, Gao J F, Cui Y C, et al. Chloroxylenol at environmental concentrations can promote conjugative transfer of antibiotic resistance genes by multiple mechanisms [J]. The Science of the Total Environment, 2022, 816: 151599

[47] Yang B Q, Wang Z Q, Jia Y Q, et al. Paclitaxel and its derivative facilitate the transmission of plasmid-mediated antibiotic resistance genes through conjugative transfer [J]. The Science of the Total Environment, 2022, 810: 152245

[48] Lu J, Wang Y, Li J, et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera [J]. Environment International, 2018, 121(Pt 2): 1217-1226

[49] Cen T Y, Zhang X Y, Xie S S, et al. Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms [J]. Environment International, 2020, 138: 105544

[50] Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria [J]. Nature, 2018, 555(7698): 623-628

[51] Wang Y, Lu J, Engelstädter J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation [J]. The ISME Journal, 2020, 14(8): 2179-2196

[52] 纪丽鹏, 王月, 褚福浩, 等. 纳米材料对微藻的生态毒性效应及机理[J]. 生态毒理学报, 2022, 17(5): 175-189

Ji L P, Wang Y, Chu F H, et al. Ecological effects and toxic mechanisms of nanomaterials to microalgae [J]. Asian Journal of Ecotoxicology, 2022, 17(5): 175-189 (in Chinese)

[53] Li Q L, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications [J]. Water Research, 2008, 42(18): 4591-4602

[54] Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13): 4944-4949

[55] Qiu Z G, Shen Z Q, Qian D, et al. Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid [J]. Nanotoxicology, 2015, 9(7): 895-904

[56] Ding C S, Jin M, Ma J, et al. Nano-Al2O3 can mediate transduction-like transformation of antibiotic resistance genes in water [J]. Journal of Hazardous Materials, 2021, 405: 124224

[57] Wang X L, Yang F X, Zhao J, et al. Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes [J]. NanoImpact, 2018, 10: 61-67

[58] Parra B, Tortella G R, Cuozzo S, et al. Negative effect of copper nanoparticles on the conjugation frequency of conjugative catabolic plasmids [J]. Ecotoxicology and Environmental Safety, 2019, 169: 662-668

[59] Zhang S, Wang Y, Song H L, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera [J]. Environment International, 2019, 129: 478-487

[60] Lu J, Wang Y, Jin M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes [J]. Water Research, 2020, 169: 115229

[61] Guo M T, Tian X B. Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation [J]. Journal of Hazardous Materials, 2019, 380: 120877

[62] Yu K Q, Chen F R, Yue L, et al. CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer [J]. Environmental Science &Technology, 2020, 54(16): 10012-10021

[63] Liu X M, Tang J C, Song B R, et al. Exposure to Al2O3 nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces [J]. Nanotoxicology, 2019, 13(10): 1422-1436

[64] Liu Y, Gao J F, Wang Y W, et al. Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition [J]. Journal of Hazardous Materials, 2022, 432: 128722

[65] Liu Y, Gao J F, Wang Y W, et al. The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate [J]. Journal of Hazardous Materials, 2022, 423(Pt A): 126866

[66] Pu Q, Fan X T, Li H, et al. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community [J]. Environmental Pollution, 2021, 268(Pt B): 115903

[67] Pu Q, Fan X T, Sun A Q, et al. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes [J]. Environment International, 2021, 152: 106453

[68] Wang H G, Gong S J, Li X H, et al. SDS coated Fe3O4@MoS2 with NIR-enhanced photothermal-photodynamic therapy and antibiotic resistance gene dissemination inhibition functions [J]. Colloids and Surfaces B, Biointerfaces, 2022, 214: 112457

[69] Wang H G, Qi H C, Gong S J, et al. Fe3O4 composited with MoS2 blocks horizontal gene transfer [J]. Colloids and Surfaces B, Biointerfaces, 2020, 185: 110569

[70] Wang H G, Qi H C, Zhu M, et al. MoS2 decorated nanocomposite: Fe2O3@MoS2 inhibits the conjugative transfer of antibiotic resistance genes [J]. Ecotoxicology and Environmental Safety, 2019, 186: 109781

[71] Li G Y, Chen X F, Yin H L, et al. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes [J]. Environment International, 2020, 136: 105497

[72] Zhang Y, Gu A Z, Cen T Y, et al. Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes [J]. Environment International, 2018, 114: 280-287

[73] 周宏瑞, 杨雨桐, 杨晓波, 等. 纳米二硫化钼促进粪肠球菌中信息素诱导质粒介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 160-169

Zhou H R, Yang Y T, Yang X B, et al. Molybdenum disulfide promotes pheromone-induced plasmid mediated conjugation transfer of drug resistance genes in Enterococcus faecalis [J]. Asian Journal of Ecotoxicology, 2022, 17(1): 160-169 (in Chinese)

[74] Shi J H, Wu D, Su Y L, et al. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate [J]. Environmental Science: Nano, 2020, 7(11): 3536-3546

[75] Loo K Y, Letchumanan V, Law J W F, et al. Incidence of antibiotic resistance in Vibrio spp [J]. Reviews in Aquaculture, 2020, 12(4): 2590-2608

[76] Zha Y Y, Li Z W, Zhong Z, et al. Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics [J]. Journal of Hazardous Materials, 2022, 431: 128561

[77] Yuan Q B, Sun R N, Yu P F, et al. UV-aging of microplastics increases proximal ARG donor-recipient adsorption and leaching of chemicals that synergistically enhance antibiotic resistance propagation [J]. Journal of Hazardous Materials, 2022, 427: 127895

[78] He K, Xue B, Yang X B, et al. Low-concentration of trichloromethane and dichloroacetonitrile promote the plasmid-mediated horizontal transfer of antibiotic resistance genes [J]. Journal of Hazardous Materials, 2022, 425: 128030

[79] Mantilla-Calderon D, Plewa M J, Michoud G, et al. Water disinfection byproducts increase natural transformation rates of environmental DNA in Acinetobacter baylyi ADP1 [J]. Environmental Science &Technology, 2019, 53(11): 6520-6528

[80] Li H, Song R Y, Wang Y Y, et al. Environmental free radicals efficiently inhibit the conjugative transfer of antibiotic resistance by altering cellular metabolism and plasmid transfer [J]. Water Research, 2021, 209: 117946

[81] Kashket E R. The proton motive force in bacteria: A critical assessment of methods [J]. Annual Review of Microbiology, 1985, 39: 219-242

[82] Buberg M L, Witsø I L, L’Abée-Lund T M, et al. Zinc and copper reduce conjugative transfer of resistance plasmids from extended-spectrum beta-lactamase-producing Escherichia coli [J]. Microbial Drug Resistance, 2020, 26(7): 842-849

[83] Payasi A. Inhibition of DNA relaxases by Elores to control spreading of resistant gene through conjugation [J]. International Journal of Biochemistry, 2013, 108: 202-206

[84] Costa O Y A, Raaijmakers J M, Kuramae E E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation [J]. Frontiers in Microbiology, 2018, 9: 1636

[85] Fulaz S, Vitale S, Quinn L, et al. Nanoparticle-biofilm interactions: The role of the EPS matrix [J]. Trends in Microbiology, 2019, 27(11): 915-926

Nonantibiotic Emerging Contaminants Affecting Horizontal Transfer of Antibiotic Resistance Genes (ARGs) Mediated by Plasmids

Fu Xinyue1,2, Yang Xiaobo2, Qiu Zhigang2,1,*

1. College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China

2. Institute of Environmental and Operational Medicine, Academy of Military Medicine Science, Academy of Military Sciences, Tianjin 300050, China

AbstractIt is generally believed that the pressure of antibiotic selection is the cause of rapid spread of antibiotic resistance genes (ARGs), but more and more evidences have shown that non-antibiotic emerging contaminants in the environment are also the cause of rapid spread of ARGs. In this paper, the research progress on the rule and mechanism of non-antibiotic emerging contaminants affecting the horizontal transfer of antibiotic resistance genes mediated by plasmids was summarized. At present, most of the researches focus on the laws and mechanisms of endocrine disruptors, drugs and personal care products and nanomaterials affecting the horizontal transfer of ARGs mediated by R plasmid. The mechanisms mainly include the effects of emerging nonantibiotic contaminants on reactive oxygen species, SOS and cell membrane permeability. The horizontal gene transfer law induced by persistent organic pollutants requires attention. And more types of plasmids and transfer mechanisms should be taken as future research directions.

Keywordsantibiotic resistance genes; horizontal transfer; plasmid; emerging contaminants

收稿日期2023-01-07

录用日期:2023-04-10

基金项目国家自然科学基金面上项目(42177414)

第一作者傅欣玥(1999—),女,硕士研究生,研究方向为环境微生物耐药产生与控制,E-mail: fxystarember@163.com

*通信作者 (Corresponding author), E-mail: zhigangqiu99@gmail.com

DOI:10.7524/AJE.1673-5897.20230107002

傅欣玥, 杨晓波, 邱志刚. 非抗生素类新污染物影响质粒携带的抗生素抗性基因(ARGs)水平转移研究进展[J]. 生态毒理学报,2023, 18(5): 1-12

Fu X Y, Yang X B, Qiu Z G. Nonantibiotic emerging contaminants affecting horizontal transfer of antibiotic resistance genes (ARGs) mediated by plasmids [J]. Asian Journal of Ecotoxicology, 2023, 18(5): 1-12 (in Chinese)

文章编号:1673-5897(2023)5-001-12

中图分类号:X171.5

文献标识码:A

Received 7 January 2023

accepted 10 April 2023

通信作者简介:邱志刚(1979—),男,博士,研究员,主要研究方向为纳米材料生物安全性及细菌耐药基因。