[1]
|
KAPILA S, ONI A, GEMECHU E, et al. Development of net energy ratios and life cycle greenhouse gas emissions of large-scale mechanical energy storage systems[J]. Energy, 2019, 170: 592-603. doi: 10.1016/j.energy.2018.12.183
CrossRef Google Scholar
Pub Med
|
[2]
|
MYSIAK J, SURMINSKI S, THIEKEN A, et al. Brief communication: Sendai framework for disaster risk reduction – success or warning sign for Paris?[J]. Natural Hazardsand Earth SystemSciences, 2016, 16(10): 2189-2193. doi: 10.5194/nhess-16-2189-2016
CrossRef Google Scholar
Pub Med
|
[3]
|
NYAMBURA M G, MUGERA G W, FELICIA P L, et al. Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration[J]. Journal of environmental management, 2011, 92(3): 655-664. doi: 10.1016/j.jenvman.2010.10.008
CrossRef Google Scholar
Pub Med
|
[4]
|
王丹. 二氧化碳捕集、利用与封存技术全链分析与集成优化研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020.
Google Scholar
Pub Med
|
[5]
|
NORHASYIMA R S, MAHLIA T. Advances in CO2 utilization technology: A patent landscape review[J]. Journal of CO2 Utilization, 2018, 26: 323-335. doi: 10.1016/j.jcou.2018.05.022
CrossRef Google Scholar
Pub Med
|
[6]
|
CUéLLAR-FRANCA R, AZAPAGIC A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts[J]. Journal of CO2 Utilization, 2015, 9(1): 82-102.
Google Scholar
Pub Med
|
[7]
|
王建行, 赵颖颖, 李佳慧, 等. 二氧化碳的捕集, 固定与利用的研究进展[J]. 无机盐工业, 2020, 52(4): 6.
Google Scholar
Pub Med
|
[8]
|
PANDEY S, SRIVASTAVA V C, KUMAR V. Comparative thermodynamic analysis of CO2 based dimethyl carbonate synthesis routes[J]. The Canadian Journal of Chemical Engineering, 2021, 99(2): 467-478. doi: 10.1002/cjce.23893
CrossRef Google Scholar
Pub Med
|
[9]
|
WANG F, DREISINGER D, JARVIS M, et al. Quantifying kinetics of mineralization of carbon dioxide by olivine under moderate conditions[J]. Chemical Engineering Journal, 2019, 360: 452-463. doi: 10.1016/j.cej.2018.11.200
CrossRef Google Scholar
Pub Med
|
[10]
|
BOBICKI E R, LIU Q, XU Z, et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy and Combustion Science, 2012, 38(2): 302-320. doi: 10.1016/j.pecs.2011.11.002
CrossRef Google Scholar
Pub Med
|
[11]
|
ZHANG Z, PAN S Y, LI H, et al. Recent advances in carbon dioxide utilization[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109799. doi: 10.1016/j.rser.2020.109799
CrossRef Google Scholar
Pub Med
|
[12]
|
武鸽, 刘艳芳, 崔龙鹏, 等. 典型工业固体废物碳酸化反应性能的比较[J]. 石油学报(石油加工), 2020, 36(1): 169-178.
Google Scholar
Pub Med
|
[13]
|
张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能[J]. 环境工程学报, 2021, 15(7): 2344-2355. doi: 10.12030/j.cjee.202101003
CrossRef Google Scholar
Pub Med
|
[14]
|
ROMANOV V, SOONG Y, CARNEY C, et al. Mineralization of Carbon Dioxide: A Literature Review[J]. ChemBioEng Reviews, 2015, 2(4): 231-256. doi: 10.1002/cben.201500002
CrossRef Google Scholar
Pub Med
|
[15]
|
刘展, 郭瑞亚, 李娜, 等. 高含盐废水资源化利用技术的研究进展[J]. 应用化工, 2020, 49(10): 2657-2661. doi: 10.3969/j.issn.1671-3206.2020.10.055
CrossRef Google Scholar
Pub Med
|
[16]
|
MUSTAFA J, MOURAD A A H I, AL-MARZOUQI A H, et al. Simultaneous treatment of reject brine and capture of carbon dioxide: A comprehensive review[J]. Desalination, 2020, 483: 114386. doi: 10.1016/j.desal.2020.114386
CrossRef Google Scholar
Pub Med
|
[17]
|
LI Y, PEI S, PAN S Y, et al. Carbonation and utilization of basic oxygen furnace slag coupled with concentrated water from electrodeionization[J]. Journal of CO2 Utilization, 2018, 25: 46-55. doi: 10.1016/j.jcou.2018.03.003
CrossRef Google Scholar
Pub Med
|
[18]
|
BANG J H, YOO Y, LEE S W, et al. CO2 mineralization using brine discharged from a seawater desalination plant[J]. Minerals, 2017, 7(11): 207. doi: 10.3390/min7110207
CrossRef Google Scholar
Pub Med
|
[19]
|
MIGNARDI S, DE V C, FERRINI V, et al. The efficiency of CO2 sequestration via carbonate mineralization with simulated wastewaters of high salinity[J]. Journal of Hazardous Materials, 2011, 191(1): 49-55.
Google Scholar
Pub Med
|
[20]
|
BEHBAHANI M, MOGHADDAM M R A, ARAMI M. Techno-economical evaluation of fluoride removal by electrocoagulation process: Optimization through response surface methodology[J]. Desalination, 2011, 271(1-3): 209-218. doi: 10.1016/j.desal.2010.12.033
CrossRef Google Scholar
Pub Med
|
[21]
|
KHEDMATI M, KHODAII A, HAGHSHENAS H F. A study on moisture susceptibility of stone matrix warm mix asphalt[J]. Construction and Building Materials, 2017, 144: 42-49. doi: 10.1016/j.conbuildmat.2017.03.121
CrossRef Google Scholar
Pub Med
|
[22]
|
ZHANG L, ZENG Y, CHENG Z. Removal of heavy metal ions using chitosan and modified chitosan: A review[J]. Journal of Molecular Liquids, 2016, 214: 175-191. doi: 10.1016/j.molliq.2015.12.013
CrossRef Google Scholar
Pub Med
|
[23]
|
WANG B, PAN Z, CHENG H, et al. A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum[J]. Journal of Cleaner Production, 2021, 302: 126930. doi: 10.1016/j.jclepro.2021.126930
CrossRef Google Scholar
Pub Med
|
[24]
|
任国宏, 廖洪强, 吴海滨, 等. 粉煤灰、电石渣及其配合物碳酸化特性[J]. 环境工程学报, 2018, 12(08): 2295-2300. doi: 10.12030/j.cjee.201803119
CrossRef Google Scholar
Pub Med
|
[25]
|
颜鑫, 魏义兰. 含钙镁废渣综合利用的现状及展望[J]. 无机盐工业, 2022, 54(1): 7-11. doi: 10.19964/j.issn.1006-4990.2021-0227
CrossRef Google Scholar
Pub Med
|
[26]
|
赵立文, 朱干宇, 李少鹏, 等. 电石渣特性及综合利用研究进展[J]. 洁净煤技术, 2021, 27(3): 13-26. doi: 10.13226/j.issn.1006-6772.21010601
CrossRef Google Scholar
Pub Med
|
[27]
|
PAN S, CHANG E, CHIANG P C. CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications[J]. Aerosol Air Quality Research, 2012, 12(5): 770-791. doi: 10.4209/aaqr.2012.06.0149
CrossRef Google Scholar
Pub Med
|
[28]
|
SOONG Y, FAUTH D L, HOWARD B H, et al. CO2 sequestration with brine solution and fly ashes[J]. Energy conversion and Management, 2006, 47(13-14): 1676-1685. doi: 10.1016/j.enconman.2005.10.021
CrossRef Google Scholar
Pub Med
|
[29]
|
NI P, XIONG Z, TIAN C, et al. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash[J]. Waste Management, 2017, 67: 171-180. doi: 10.1016/j.wasman.2017.05.023
CrossRef Google Scholar
Pub Med
|
[30]
|
倪鹏. 垃圾焚烧飞灰矿化解毒一体化的研究[D]. 武汉: 华中科技大学, 2018.
Google Scholar
Pub Med
|
[31]
|
BACIOCCHI R, COSTA G, DI BARTOLOMEO E, et al. The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues[J]. Waste Management, 2009, 29(12): 2994-3003. doi: 10.1016/j.wasman.2009.07.012
CrossRef Google Scholar
Pub Med
|
[32]
|
UKWATTAGE N L, RANJITH P, YELLISHETTY M, et al. A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration[J]. Journal of Cleaner Production, 2015, 103: 665-674. doi: 10.1016/j.jclepro.2014.03.005
CrossRef Google Scholar
Pub Med
|
[33]
|
HO H J, IIZUKA A, SHIBATA E. Utilization of low-calcium fly ash via direct aqueous carbonation with a low-energy input: Determination of carbonation reaction and evaluation of the potential for CO2 sequestration and utilization[J]. Journal of Environmental Management, 2021, 288: 112411. doi: 10.1016/j.jenvman.2021.112411
CrossRef Google Scholar
Pub Med
|