[1]
|
ROSTAMI S, JAFARI S, MOEINI Z, et al. Current methods and technologies for degradation of atrazine in contaminated soil and water: A review[J]. Environmental Technology & Innovation, 2021, 24: 102019.
Google Scholar
Pub Med
|
[2]
|
陈建军, 何月秋, 祖艳群, 等. 除草剂阿特拉津的生态风险与植物修复研究进展[J]. 农业环境科学学报, 2010, 29(S1): 289-293.
Google Scholar
Pub Med
|
[3]
|
SHIRMARDI M, ALAVI N, LIMA E C, et al. Removal of atrazine as an organic micro-pollutant from aqueous solutions: A comparative study[J]. Process Safety and Environmental Protection, 2016, 103: 23-35. doi: 10.1016/j.psep.2016.06.014
CrossRef Google Scholar
Pub Med
|
[4]
|
董静, 夏龙超, 平永青, 等. 水环境中阿特拉津污染及修复研究现状[J]. 应用化工, 2022, 51(1): 144-149. doi: 10.3969/j.issn.1671-3206.2022.01.032
CrossRef Google Scholar
Pub Med
|
[5]
|
钱玉亭, 黄红, 陈际雨, 等. 水中阿特拉津的高级氧化工艺去除研究进展[J]. 山东化工, 2020, 49(10): 69-71. doi: 10.3969/j.issn.1008-021X.2020.10.024
CrossRef Google Scholar
Pub Med
|
[6]
|
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
CrossRef Google Scholar
Pub Med
|
[7]
|
OLMEZ-HANCI T, ARSLAN-ALATON I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16. doi: 10.1016/j.cej.2012.11.007
CrossRef Google Scholar
Pub Med
|
[8]
|
ZHANG L, ZHANG L, SUN Y, et al. Porous ZrO2 encapsulated perovskite composite oxide for organic pollutants removal: Enhanced catalytic efficiency and suppressed metal leaching[J]. Journal Colloid And Interface Science, 2021, 596: 455-467. doi: 10.1016/j.jcis.2021.03.171
CrossRef Google Scholar
Pub Med
|
[9]
|
HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials[J]. Nature Nanotechnolgy, 2018, 13(8): 642-650. doi: 10.1038/s41565-018-0216-x
CrossRef Google Scholar
Pub Med
|
[10]
|
OH W-D, DONG Z, LIM T-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B:Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
CrossRef Google Scholar
Pub Med
|
[11]
|
DONG X, DUAN X, SUN Z, et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis[J]. Applied Catalysis B:Environmental, 2020, 261: 118214. doi: 10.1016/j.apcatb.2019.118214
CrossRef Google Scholar
Pub Med
|
[12]
|
HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
CrossRef Google Scholar
Pub Med
|
[13]
|
SHUKLA P, WANG S, SINGH K, et al. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate[J]. Applied Catalysis B:Environmental, 2010, 99(1-2): 163-169. doi: 10.1016/j.apcatb.2010.06.013
CrossRef Google Scholar
Pub Med
|
[14]
|
MIAO J, DUAN X, LI J, et al. Boosting performance of lanthanide magnetism perovskite for advanced oxidation through lattice doping with catalytically inert element[J]. Chemical Engineering Journal, 2019, 355: 721-730. doi: 10.1016/j.cej.2018.08.192
CrossRef Google Scholar
Pub Med
|
[15]
|
YAO Y, CAI Y, WU G, et al. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-Like reaction in water[J]. Journal Hazardous Materials, 2015, 296: 128-137. doi: 10.1016/j.jhazmat.2015.04.014
CrossRef Google Scholar
Pub Med
|
[16]
|
ZHU J, LI H, ZHONG L, et al. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis[J]. ACS Catalysis, 2014, 4(9): 2917-2940. doi: 10.1021/cs500606g
CrossRef Google Scholar
Pub Med
|
[17]
|
Rojas-Cervantes M, Castillejos E. Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment[J]. Catalysts, 2019, 9(3): 230. doi: 10.3390/catal9030230
CrossRef Google Scholar
Pub Med
|
[18]
|
MUELLER D N, MACHALA M L, BLUHM H, et al. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions[J]. Nature Communications, 2015, 6: 6097. doi: 10.1038/ncomms7097
CrossRef Google Scholar
Pub Med
|
[19]
|
GONG S, XIE Z, LI W, et al. Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition[J]. Applied Catalysis B:Environmental, 2019, 241: 578-587. doi: 10.1016/j.apcatb.2018.09.041
CrossRef Google Scholar
Pub Med
|
[20]
|
LIANG P, MENG D, LIANG Y, et al. Cation deficiency tuned LaCoO3−δ perovskite for peroxymonosulfate activation towards bisphenol A degradation[J]. Chemical Engineering Journal, 2021, 409: 128196. doi: 10.1016/j.cej.2020.128196
CrossRef Google Scholar
Pub Med
|
[21]
|
王柯晴, 徐劼, 沈芷璇, 等. LaCoO3钙钛矿活化过一硫酸盐降解萘普生[J]. 化工学报, 2020, 71(3): 1326-1334.
Google Scholar
Pub Med
|
[22]
|
YANG X, WU P, CHU W, et al. Peroxymonosulfate/LaCoO3 system for tetracycline degradation: Performance and effects of co-existing inorganic anions and natural organic matter[J]. Journal of Water Process Engineering, 2021, 43: 102231. doi: 10.1016/j.jwpe.2021.102231
CrossRef Google Scholar
Pub Med
|
[23]
|
GUO H, ZHOU X, ZHANG Y, et al. Carbamazepine degradation by heterogeneous activation of peroxymonosulfate with lanthanum cobaltite perovskite: Performance, mechanism and toxicity[J]. Journal Environ mental Scienses, 2020, 91: 10-21.
Google Scholar
Pub Med
|
[24]
|
PANG X, GUO Y, ZHANG Y, et al. LaCoO3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: Effect of synthetic method and the reaction mechanism[J]. Chemical Engineering Journal, 2016, 304: 897-907. doi: 10.1016/j.cej.2016.07.027
CrossRef Google Scholar
Pub Med
|
[25]
|
WANG S, WANG J. Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions[J]. Chemical Engineering Journal, 2018, 351: 688-696. doi: 10.1016/j.cej.2018.06.137
CrossRef Google Scholar
Pub Med
|
[26]
|
GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064
CrossRef Google Scholar
Pub Med
|
[27]
|
王渊源, 阎鑫, 艾涛, 等. 碳化泡沫负载Co3O4活化过硫酸盐降解罗丹明B[J]. 环境科学, 2022, 43(04): 2039-2046.
Google Scholar
Pub Med
|
[28]
|
DUNG N T, THU T V, VAN NGUYEN T, et al. Catalytic activation of peroxymonosulfate with manganese cobaltite nanoparticles for the degradation of organic dyes[J]. RSC Advances, 2020, 10(7): 3775-3788. doi: 10.1039/C9RA10169A
CrossRef Google Scholar
Pub Med
|
[29]
|
杨贤, 梁嘉林, 曾刘婷, 等. 负载磁性废茶生物炭活化过一硫酸盐高效降解水中腐殖酸和富里酸[J]. 环境科学学报, 2021, 41(8): 3185-3199. doi: 10.13671/j.hjkxxb.2021.0043
CrossRef Google Scholar
Pub Med
|
[30]
|
SOTELO J L, OVEJERO G, MARTÍNEZ F, et al. Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1−xCuxO3 perovskite catalyst[J]. Applied Catalysis B:Environmental, 2004, 47(4): 281-294. doi: 10.1016/j.apcatb.2003.09.007
CrossRef Google Scholar
Pub Med
|
[31]
|
叶国杰. 钴镍双金属有机框架高效催化臭氧去除难生物降解污染物[J]. 广州:华南理工大学, 2020: 21-22.
Google Scholar
Pub Med
|
[32]
|
PHOKHA S, PINITSOONTORN S, MAENSIRI S, et al. Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method[J]. Journal of Sol-Gel Science and Technology, 2014, 71(2): 333-341. doi: 10.1007/s10971-014-3383-8
CrossRef Google Scholar
Pub Med
|
[33]
|
GAO P, TIAN X, FU W, et al. Copper in LaMnO3 to promote peroxymonosulfate activation by regulating the reactive oxygen species in sulfamethoxazole degradation[J]. Journal Hazardous Materials, 2021, 411: 125163. doi: 10.1016/j.jhazmat.2021.125163
CrossRef Google Scholar
Pub Med
|
[34]
|
徐劼, 陈家斌, 卢建, 等. LaCo0.5Cu0.5O3型钙钛矿活化过一硫酸盐降解AO7[J]. 中国环境科学, 2020, 40(3): 1123-1131. doi: 10.3969/j.issn.1000-6923.2020.03.023
CrossRef Google Scholar
Pub Med
|
[35]
|
WANG H, GUO W, LIU B, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism[J]. Water Research, 2019, 160: 405-414. doi: 10.1016/j.watres.2019.05.059
CrossRef Google Scholar
Pub Med
|
[36]
|
LI J, ZHU K, LI R, et al. The removal of azo dye from aqueous solution by oxidation with peroxydisulfate in the presence of granular activated carbon: Performance, mechanism and reusability[J]. Chemosphere, 2020, 259: 127400. doi: 10.1016/j.chemosphere.2020.127400
CrossRef Google Scholar
Pub Med
|
[37]
|
LONG Y, HUANG Y, WU H, et al. Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight[J]. Chemical Engineering Journal, 2019, 369: 542-552. doi: 10.1016/j.cej.2019.03.097
CrossRef Google Scholar
Pub Med
|
[38]
|
LONG Y, BU S, HUANG Y, et al. N-doped hierarchically porous carbon for highly efficient metal-free catalytic activation of peroxymonosulfate in water: A non-radical mechanism[J]. Chemosphere, 2019, 216: 545-555. doi: 10.1016/j.chemosphere.2018.10.175
CrossRef Google Scholar
Pub Med
|
[39]
|
HU L, YANG F, LU W, et al. Heterogeneous activation of oxone with CoMg/SBA-15 for the degradation of dye Rhodamine B in aqueous solution[J]. Applied Catalysis B:Environmental, 2013, 134-135: 7-18. doi: 10.1016/j.apcatb.2012.12.028
CrossRef Google Scholar
Pub Med
|
[40]
|
LU S, WANG G, CHEN S, et al. Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants[J]. Journal Hazardous Materials, 2018, 353: 401-409. doi: 10.1016/j.jhazmat.2018.04.021
CrossRef Google Scholar
Pub Med
|
[41]
|
SU S, GUO W, LENG Y, et al. Heterogeneous activation of Oxone by CoxFe(3-x)O4 nanocatalysts for degradation of rhodamine B[J]. Journal Hazardous Materials, 2013, 244-245: 736-42. doi: 10.1016/j.jhazmat.2012.11.005
CrossRef Google Scholar
Pub Med
|
[42]
|
MA J, YANG Y, JIANG X, et al. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water[J]. Chemosphere, 2018, 190: 296-306. doi: 10.1016/j.chemosphere.2017.09.148
CrossRef Google Scholar
Pub Med
|
[43]
|
YU X, JIN X, LI M, et al. Degradation mechanism of tetracycline using sulfidated nanoscale zerovalent iron driven peroxymonosulfate and metabolomic insights into environmental risk of intermediates products[J]. Chemical Engineering Journal, 2022, 430(Pt 4): 133141.
Google Scholar
Pub Med
|
[44]
|
YUAN R, JIANG M, GAO S, et al. 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 380: 122447. doi: 10.1016/j.cej.2019.122447
CrossRef Google Scholar
Pub Med
|
[45]
|
PENG J, LU X, JIANG X, et al. Degradation of atrazine by persulfate activation with copper sulfide (CuS): Kinetics study, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 354: 740-752. doi: 10.1016/j.cej.2018.08.038
CrossRef Google Scholar
Pub Med
|
[46]
|
XU Y, LIN H, LI Y, et al. The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis[J]. Science of Total Environmental, 2017, 609: 644-654. doi: 10.1016/j.scitotenv.2017.07.151
CrossRef Google Scholar
Pub Med
|
[47]
|
赖树锋, 梁锦芝, 肖开棒, 等. Ag改性石墨相氮化碳(g-C3N4)可见光辅助活化过一硫酸盐降解罗丹明B[J]. 环境科学学报, 2021, 41(5): 1847-1858.
Google Scholar
Pub Med
|
[48]
|
CAO J, LAI L, LAI B, et al. Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity and mechanism[J]. Chemical Engineering Journal, 2019, 364: 45-56. doi: 10.1016/j.cej.2019.01.113
CrossRef Google Scholar
Pub Med
|
[49]
|
WANG J, WANG S. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 128392. doi: 10.1016/j.cej.2020.128392
CrossRef Google Scholar
Pub Med
|
[50]
|
NAGOYA S, NAKAMICHI S, Kawase Y. Mechanisms of phosphate removal from aqueous solution by zero-valent iron: A novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions[J]. Separation and Purification Technology, 2019, 218: 120-129. doi: 10.1016/j.seppur.2019.02.042
CrossRef Google Scholar
Pub Med
|
[51]
|
SINGH S, DOSANI T, KARAKOTI A S, et al. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties[J]. Biomaterials, 2011, 32(28): 6745-53. doi: 10.1016/j.biomaterials.2011.05.073
CrossRef Google Scholar
Pub Med
|
[52]
|
ZHU S, XIAO P, WANG X, et al. Efficient peroxymonosulfate (PMS) activation by visible-light-driven formation of polymorphic amorphous manganese oxides[J]. Journal Hazardous Materials, 2022, 427: 127938. doi: 10.1016/j.jhazmat.2021.127938
CrossRef Google Scholar
Pub Med
|
[53]
|
WANG Y, CHEN S. Droplets impact on textured surfaces: Mesoscopic simulation of spreading dynamics[J]. Applied Surface Science, 2015, 327: 159-167. doi: 10.1016/j.apsusc.2014.11.148
CrossRef Google Scholar
Pub Med
|
[54]
|
SUN J, WANG L, WANG Y, et al. Activation of peroxymonosulfate by MgCoAl layered double hydroxide: Potential enhancement effects of catalyst morphology and coexisting anions[J]. Chemosphere, 2022, 286(Pt 1): 131640.
Google Scholar
Pub Med
|
[55]
|
DUAN P, QI Y, FENG S, PENG X, WANG W, YUE Y, et al. Enhanced degradation of clothianidin in peroxymonosulfate/catalyst system via core-shell FeMn @ N-C and phosphate surrounding[J]. Applied Catalysis B: Environmental. 2020, 267: 118717.
Google Scholar
Pub Med
|
[56]
|
FAN X, LIN Q, ZHENG J, FU H, XU K, LIU Y, et al. Peroxydisulfate activation by nano zero-valent iron graphitized carbon materials for ciprofloxacin removal: Effects and mechanism[J]. Journal Hazardous Materials. 2022, 437: 129392.
Google Scholar
Pub Med
|
[57]
|
WANG Y, CHEN L, CAO H, et al. Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3-δ perovskite composites for aqueous organic pollutants decontamination[J]. Applied Catalysis B:Environmental, 2019, 245: 546-554. doi: 10.1016/j.apcatb.2019.01.025
CrossRef Google Scholar
Pub Med
|
[58]
|
LIU B, GUO W, WANG H, et al. Activation of peroxymonosulfate by cobalt-impregnated biochar for atrazine degradation: The pivotal roles of persistent free radicals and ecotoxicity assessment[J]. Journal Hazardous Materials, 2020, 398: 122768. doi: 10.1016/j.jhazmat.2020.122768
CrossRef Google Scholar
Pub Med
|
[59]
|
ALI M B, BARRAS A, ADDAD A, et al. Co2SnO4 nanoparticles as a high performance catalyst for oxidative degradation of rhodamine B dye and pentachlorophenol by activation of peroxymonosulfate[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6569-6578. doi: 10.1039/C6CP08576H
CrossRef Google Scholar
Pub Med
|
[60]
|
LIU Y, GUO H, ZHANG Y, et al. Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin[J]. Chemical Engineering Journal, 2018, 343: 128-137. doi: 10.1016/j.cej.2018.02.125
CrossRef Google Scholar
Pub Med
|
[61]
|
LIANG P, ZHANG C, DUAN X, et al. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate[J]. Environmental Science-Nano, 2017, 4(2): 315-324. doi: 10.1039/C6EN00633G
CrossRef Google Scholar
Pub Med
|
[62]
|
GAO P, TIAN X, NIE Y, et al. Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration[J]. Chemical Engineering Journal, 2019, 359: 828-839. doi: 10.1016/j.cej.2018.11.184
CrossRef Google Scholar
Pub Med
|