[1]
|
孙宇. 辣椒秸秆生物炭的制备、改性及对有机染料的吸附性能研究[D]. 邯郸: 河北工程大学, 2021.
Google Scholar
Pub Med
|
[2]
|
ANWER H, MAHMOOD A, LEE J, et al. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges[J]. Nano Research, 2019, 12(5): 955-72. doi: 10.1007/s12274-019-2287-0
CrossRef Google Scholar
Pub Med
|
[3]
|
YIN Z B, LIU N, BIAN S Y, et al. Enhancing the adsorption capability of areca leaf biochar for methylene blue by K2FeO4-catalyzed oxidative pyrolysis at low temperature[J]. RSC Advances, 2019, 9(72): 42343-50. doi: 10.1039/C9RA06592J
CrossRef Google Scholar
Pub Med
|
[4]
|
JIN Z H, WANG B D, MA L, et al. Air pre-oxidation induced high yield N-doped porous biochar for improving toluene adsorption[J]. Chemical Engineering Journal, 2020, 385: 123843. doi: 10.1016/j.cej.2019.123843
CrossRef Google Scholar
Pub Med
|
[5]
|
ZHOU X H, ZHOU J J, LIU Y C, et al. Preparation of magnetic biochar derived from cyclosorus interruptus for the removal of phenolic compounds: Characterization and mechanism[J]. Separation Science and Technology, 2018, 53(9): 1307-18. doi: 10.1080/01496395.2018.1444056
CrossRef Google Scholar
Pub Med
|
[6]
|
YU Y, AN Q, JIN L, et al. Unraveling sorption of Cr (VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: Implicit mechanism and application[J]. Bioresource Technology, 2020, 297: 122466. doi: 10.1016/j.biortech.2019.122466
CrossRef Google Scholar
Pub Med
|
[7]
|
OLIVEIRA F R, PATEL A K, JAISI D P, et al. Environmental application of biochar: Current status and perspectives[J]. Bioresource Technology, 2017, 246: 110-22. doi: 10.1016/j.biortech.2017.08.122
CrossRef Google Scholar
Pub Med
|
[8]
|
ABD-ELHAMID A I, EMRAN M, EL-SADEK M H, et al. Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw[J]. Applied Water Science, 2020, 10(1): 45. doi: 10.1007/s13201-019-1128-0
CrossRef Google Scholar
Pub Med
|
[9]
|
高豆豆, 郭敏辉, 王侃, 等. 城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附[J]. 环境工程学报, 2019, 13(05): 1165-74. doi: 10.12030/j.cjee.201810129
CrossRef Google Scholar
Pub Med
|
[10]
|
张娟, 孙宇, 黄贵琦, 等. 辣椒秸秆生物炭对考马斯亮蓝染料的吸附性能研究[J]. 工业水处理, 2022, 42(02): 118-23. doi: 10.19965/j.cnki.iwt.2021-0582
CrossRef Google Scholar
Pub Med
|
[11]
|
FANG Q L, CHEN B L, LIN Y J, et al. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups[J]. Environmental Science and Technology, 2014, 48(1): 279-88. doi: 10.1021/es403711y
CrossRef Google Scholar
Pub Med
|
[12]
|
YANG K, YANG J J, JIANG Y, et al. Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar[J]. Environmental Pollution, 2016, 210: 57-64. doi: 10.1016/j.envpol.2015.12.004
CrossRef Google Scholar
Pub Med
|
[13]
|
SONG J Y, JHUNG S H. Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: Quantitative analyses of H-bonding in adsorption[J]. Chemical Engineering Journal, 2017, 322: 366-74. doi: 10.1016/j.cej.2017.04.036
CrossRef Google Scholar
Pub Med
|
[14]
|
ZHAO Y F, LIN S, CHOI J W, et al. Prediction of adsorption properties for ionic and neutral pharmaceuticals and pharmaceutical intermediates on activated charcoal from aqueous solution via LFER model[J]. Chemical Engineering Journal, 2019, 362: 199-206. doi: 10.1016/j.cej.2019.01.031
CrossRef Google Scholar
Pub Med
|
[15]
|
YU X Q, SUN W L, NI J R. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon[J]. Environmental Pollution, 2015, 206: 652-60. doi: 10.1016/j.envpol.2015.08.031
CrossRef Google Scholar
Pub Med
|
[16]
|
PLATA D L, HEMINGWAY J D, GSCHWEND P M. Polyparameter linear free energy relationship for wood char-water sorption coefficients of organic sorbates[J]. Environmental Toxicology and Chemistry, 2015, 34(7): 1464-71. doi: 10.1002/etc.2951
CrossRef Google Scholar
Pub Med
|
[17]
|
BHADRA B N, YOO D K, JHUNG S H. Carbon-derived from metal-organic framework MOF-74: A remarkable adsorbent to remove a wide range of contaminants of emerging concern from water[J]. Applied Surface Science, 2020, 504: 144348. doi: 10.1016/j.apsusc.2019.144348
CrossRef Google Scholar
Pub Med
|
[18]
|
LAGERGREN S K. About the theory of so-called adsorption of soluble substances[J]. Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24: 1-39.
Google Scholar
Pub Med
|
[19]
|
BLANCHARD G, MAUNAYE M, MARTIN G. Removal of heavy metals from waters by means of natural zeolites[J]. Water Research, 1984, 18(12): 1501-7. doi: 10.1016/0043-1354(84)90124-6
CrossRef Google Scholar
Pub Med
|
[20]
|
LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-403. doi: 10.1021/ja02242a004
CrossRef Google Scholar
Pub Med
|
[21]
|
FREUNDLICH H. Über die adsorption in lösungen[J]. Zeitschrift für Physikalische Chemie, 1907, 57(1): 385-470.
Google Scholar
Pub Med
|
[22]
|
DUBININ M I. Physical adsorption of gases and vapors in micropores[J]. Amsterdam:Elsevier, 1975: 1-70.
Google Scholar
Pub Med
|
[23]
|
REDLICH O, PETERSON D L. A useful adsorption isotherm[J]. The Journal of Physical Chemistry, 1959, 63(6): 1024. doi: 10.1021/j150576a611
CrossRef Google Scholar
Pub Med
|
[24]
|
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16, Revision C. 01[CP/DK]. Wallingford CT: Gaussian Inc. , 2019.
Google Scholar
Pub Med
|
[25]
|
LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-9. doi: 10.1103/PhysRevB.37.785
CrossRef Google Scholar
Pub Med
|
[26]
|
BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. The Journal of Physical Chemistry, 1993, 98(7): 5648-52. doi: 10.1063/1.464913
CrossRef Google Scholar
Pub Med
|
[27]
|
GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-65. doi: 10.1002/jcc.21759
CrossRef Google Scholar
Pub Med
|
[28]
|
TREUTLER O, AHLRICHS R. Efficient molecular numerical integration schemes[J]. Journal of Chemical Physics, 1995, 102(1): 346-54. doi: 10.1063/1.469408
CrossRef Google Scholar
Pub Med
|
[29]
|
WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-305. doi: 10.1039/b508541a
CrossRef Google Scholar
Pub Med
|
[30]
|
ZHENG J J, XU X F, TRUHLAR D G. Minimally augmented Karlsruhe basis sets[J]. Theoretical Chemistry Accounts, 2011, 128(3): 295-305. doi: 10.1007/s00214-010-0846-z
CrossRef Google Scholar
Pub Med
|
[31]
|
LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-92. doi: 10.1002/jcc.22885
CrossRef Google Scholar
Pub Med
|
[32]
|
WANG H Z, GUO W Q, LIU B H, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism[J]. Water Research, 2019, 160: 405-14. doi: 10.1016/j.watres.2019.05.059
CrossRef Google Scholar
Pub Med
|
[33]
|
TIAN W J, ZHANG H Y, SUN H Q, et al. Heteroatom (N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications[J]. Advanced Functional Materials, 2016, 26(47): 8651-61. doi: 10.1002/adfm.201603937
CrossRef Google Scholar
Pub Med
|
[34]
|
XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures[J]. Environmental Science and Technology, 2014, 48(6): 3411-9. doi: 10.1021/es405676h
CrossRef Google Scholar
Pub Med
|
[35]
|
LENG L J, XU S Y, LIU R F, et al. Nitrogen containing functional groups of biochar: An overview[J]. Bioresource Technology, 2020, 298: 122286. doi: 10.1016/j.biortech.2019.122286
CrossRef Google Scholar
Pub Med
|
[36]
|
CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science and Technology, 2008, 42(14): 5137-43. doi: 10.1021/es8002684
CrossRef Google Scholar
Pub Med
|
[37]
|
SHAFEEYAN M S, DAUD W W, HOUSHMAND A, et al. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation[J]. Applied Surface Science, 2011, 257(9): 3936-42. doi: 10.1016/j.apsusc.2010.11.127
CrossRef Google Scholar
Pub Med
|
[38]
|
RAMESHA G K, VIJAYA K A, MURALIDHARA H B, et al. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes[J]. Journal of Colloid and Interface Science, 2011, 361(1): 270-7. doi: 10.1016/j.jcis.2011.05.050
CrossRef Google Scholar
Pub Med
|
[39]
|
VOGGU R, ROUT C S, FRANKLIN A D, et al. Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer[J]. Journal of Physical Chemistry C, 2008, 112(34): 13053-6. doi: 10.1021/jp805136e
CrossRef Google Scholar
Pub Med
|
[40]
|
KIM S J, SONG Y J, WRIGHT J, et al. Graphene bi- and trilayers produced by a novel aqueous arc discharge process[J]. Carbon, 2016, 102: 339-45. doi: 10.1016/j.carbon.2016.02.049
CrossRef Google Scholar
Pub Med
|
[41]
|
PEREIRA R C, ARBESTAIN M C, SUEIRO M V, et al. Assessment of the surface chemistry of wood-derived biochars using wet chemistry, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy[J]. Soil Research, 2015, 53(7): 753-62. doi: 10.1071/SR14194
CrossRef Google Scholar
Pub Med
|
[42]
|
TIAN S Q, WANG L, LIU Y L, et al. Enhanced permanganate oxidation of sulfamethoxazole and removal of dissolved organics with biochar: Formation of highly oxidative manganese intermediate species and in situ activation of biochar[J]. Environmental Science and Technology, 2019, 53(9): 5282-91. doi: 10.1021/acs.est.9b00180
CrossRef Google Scholar
Pub Med
|
[43]
|
LI Y C, XING B, WANG X L, et al. Nitrogen-doped hierarchical porous biochar derived from corn stalks for phenol-enhanced adsorption[J]. Energy & Fuels, 2019, 33(12): 12459-68.
Google Scholar
Pub Med
|
[44]
|
GAO F, XU Z X, DAI Y J. Removal of tetracycline from wastewater using magnetic biochar: A comparative study of performance based on the preparation method[J]. Environmental Technology & Innovation, 2021, 24: 101916.
Google Scholar
Pub Med
|
[45]
|
YU J F, FENG H P, TANG L, et al. Insight into the key factors in fast adsorption of organic pollutants by hierarchical porous biochar[J]. Journal of Hazardous Materials, 2021, 403: 123610. doi: 10.1016/j.jhazmat.2020.123610
CrossRef Google Scholar
Pub Med
|
[46]
|
WANG H L, TANG H Q, LIU Z T, et al. Removal of cobalt(II) ion from aqueous solution by chitosan–montmorillonite[J]. Journal of Environmental Sciences, 2014, 26(9): 1879-84. doi: 10.1016/j.jes.2014.06.021
CrossRef Google Scholar
Pub Med
|
[47]
|
TONG D S, WU C W, ADEBAJO M O, et al. Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites[J]. Applied Clay Science, 2018, 161: 256-64. doi: 10.1016/j.clay.2018.02.017
CrossRef Google Scholar
Pub Med
|
[48]
|
ZHOU N, GUO X X, YE C Q, et al. Enhanced fluoride removal from drinking water in wide pH range using La/Fe/Al oxides loaded rice straw biochar[J]. Water Supply, 2021, 22(1): 779-94.
Google Scholar
Pub Med
|
[49]
|
LIU S J, PAN M D, FENG Z M, et al. Ultra-high adsorption of tetracycline antibiotics on garlic skin-derived porous biomass carbon with high surface area[J]. New Journal of Chemistry, 2020, 44(3): 1097-106. doi: 10.1039/C9NJ05396D
CrossRef Google Scholar
Pub Med
|
[50]
|
CHENG N, WANG B, WU P, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review[J]. Environmental Pollution, 2021, 273: 116448. doi: 10.1016/j.envpol.2021.116448
CrossRef Google Scholar
Pub Med
|
[51]
|
WU J, YANG J W, FENG P, et al. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar[J]. Chemosphere, 2020, 246: 125734. doi: 10.1016/j.chemosphere.2019.125734
CrossRef Google Scholar
Pub Med
|
[52]
|
XU C H, NIE J D, WU W C, et al. Self-healable, recyclable, and strengthened epoxidized natural rubber/carboxymethyl chitosan biobased composites with hydrogen bonding supramolecular hybrid networks[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(18): 15778-89. doi: 10.1021/acssuschemeng.9b04324
CrossRef Google Scholar
Pub Med
|