-
生活垃圾无害化处理方式主要包括卫生填埋、焚烧和堆肥等[1]。截至2020年,焚烧处理占62%成为我国生活垃圾的主要处理方式[1]。在生活垃圾焚烧过程中易生成具有致癌、致畸、致突变和伤害免疫系统等危害的二恶英 (PCDD/Fs) ,它包括多氯代二苯并呋喃 (PCDFs) 和多氯代二苯并二恶英 (PCDDs) [2-4]。目前,生活垃圾焚烧厂采用“3T+E”的焚烧方式配合烟道活性炭喷射+布袋等措施加以控制[5]。然而,因为缺少二恶英的在线监测设施,二恶英的控制仍存在较大的不确定性[6],难以达到实时控制要求。
近年来,研究者在生活垃圾焚烧设施二恶英防控和软测量方面开展了诸多研究。结果表明,在生活垃圾焚烧过程中,二恶英主要在烟气降温区间 (400~200 ℃) 生成 [7],二恶英的生成机理包括“高温气相生成”、“从头合成 (de novo) ”和“前驱物生成”3种,其中,“从头合成”和“前驱物生成”占主导地位[5,8-9]。在二恶英的排放与预测方面,有研究者发现,其排放量主要与生活垃圾成分、燃烧状态和烟道活性炭喷射等因素密切相关,并采用随机森林法、人工神经网络和支持向量机回归算法等构建了二恶英排放的预测模型[6,10-11] ,但仍然很难为实时调控二恶英的排放提供科学支持[11]。
针对如何通过实时调节运行参数实现二恶英减排的问题,本研究以华南某生活垃圾焚烧发电厂为研究对象,通过分析焚烧系统的各种运行状态下的炉内特征、二恶英和常规大气污染物的排放特征,阐明二恶英的生成机理及其调控方案,以期为优化焚烧过程和降低二恶英排放提供参考依据。
Prevention and control of dioxins emission in domestic waste incineration facilities based on k-Means algorithm
- Received Date: 13/07/2022
- Available Online: 31/12/2022
-
Key words:
- domestic waste /
- incineration facilities /
- dioxins emission /
- k-Means algorithm
Abstract: In order to further explore the prevention and control of dioxins emission from domestic waste incineration facilities, pollution characteristics and control mechanisms of dioxins emitted from a domestic waste incineration power plant in South China under different operation status of incineration facilities and different furnace conditions were studied by k-Means algorithm. The results showed that three incinerators in the plant had significantly 2 different operation status (Status 1 and 2) (p<0.05), with distinct emissions of air pollutants including conventional pollutants and dioxins. The mass concentrations of CO and ∑PCDD/DFs were 2 times and 1.5 times higher, respectively, in Status 1 than Status 2. The dominant formation mechanisms of dioxins in status 1 and status 2 were the precursor synthesis reaction and the de novo synthesis reaction, respectively. To reduce the dioxins emission, the plant should firstly ensure that the smoke volume should be above 10.5×104 m3·h−1, and then guarantee that the other parameters of domestic waste incineration are in the following optimal range: flue gas oxygen content above 7%, carbon monoxide concentration below 9.0 mg·m−3, flue gas temperature between 140 ℃ and 154 ℃, and flue gas humidity below 23.7%. The incinerator should be shut down for maintenance when the limits of the optimal parameters are exceeded. The results could provide a scientific support for optimizing the incineration process and reducing dioxin emission, and also provide a theoretical basis for the identification and fine management of long-term stable operation of domestic waste incineration power plants.