-
化学镀镍是通过还原剂提供电子,使得金属离子还原为金属单质镀在镀件表面的工艺[1],化学镀镍电镀液中主要以次磷酸盐为还原剂,硫酸镍提供镍离子,由有机酸或者盐类作为络合剂。化学镀镍废水主要来源是化学镍镀件的漂洗水,其主要成分为高浓度镍离子、次磷酸盐和亚磷酸盐、难降解有机物[2]。现有的处理技术主要有离子交换法[3]、膜分离反渗透法[4]、化学沉淀法[5]和高级氧化技术。离子交换法和膜分离法由于运行要求高,膜易受污染以及离子交换剂饱和再生等限制,难以大规模运用。对于络合镍,由于络合剂能与镍离子稳定结合,很难通过传统的化学破络及沉淀方法彻底去除。高级氧化技术操作方便,处理效果好,在处理含镍废水中广泛应用。刘洋[6]采用类芬顿氧化处理化学镀镍废水,XU等[7]采用电催化处理化学镀镍工艺废水,均取得一定的效果。但上述工艺均存在一定弊端,芬顿氧化污泥产生量大,电催化技术处理规模小,对设备要求高。因此,急须寻找一种稳定、高效的方法降解水中络合镍和有机物。
臭氧具有氧化性强、操作简单、无二次污染等优点,被广泛应用于水处理中[8-9]。臭氧氧化降解有机物的途径分为直接反应和间接反应[10]。直接反应是指臭氧直接和有机物进行反应,具有较强的选择性,不能很好地降解有机物[11];间接反应是指通过催化作用引发臭氧分解生成具有强氧化性的 · OH, · OH再与有机污染物发生反应。 · OH (E0=2.8 V)比O3(E0=2.07 V)具有更高的氧化还原电位,可以和水中大部分的有机物反应,因此,臭氧催化氧化技术在水处理领域具有独特的优势[12-13]。
本研究采用臭氧催化氧化工艺处理化学镀镍废水,考察了臭氧催化氧化对化学镀镍废水的处理效果,研究了臭氧投加量、反应pH和反应时间对出水COD和UV254的影响;对最优反应条件下臭氧催化氧化出水进行化学沉淀,通过检测进出水总镍的变化,考察臭氧催化氧化对络合态镍的破络效果。本研究对处理前后废水的生物毒性进行了探讨,为化学镀镍废水的处理提供了参考。
臭氧催化氧化处理化学镀镍废水
Treatment of electroless nickel-plating wastewater by ozone catalytic oxidation
-
摘要: 采用臭氧催化氧化工艺处理化学镀镍废水,以Fe2O3-TiO2-MnO2/A12O3作为臭氧催化剂,考察了不同反应条件下臭氧催化氧化对化学镀镍废水的影响。结果表明,在初始pH为9,臭氧投加量为300 mg·L−1,反应时间为60 min的最佳反应条件下,水中COD可从532 mg·L−1下降至285 mg·L−1,去除率达到46.4%。臭氧催化氧化对化学镍具有较好的破络效果,在初始pH为9,臭氧投加量为200 mg·L−1,反应为60 min后进行混凝过滤,水中镍的去除率可达到86.7%。紫外全波段扫描分析发现,经臭氧催化氧化后,各波段的吸收峰均有大幅度下降,位于254 nm和320 nm处的吸收峰基本消失,说明水中的苯环类物质和共轭结构被破坏。经臭氧催化氧化后,废水的生物毒性大幅降低,废水的可生化性提高,出水B/C由原来的0.12提高到0.36,为后续进一步生化处理提供了条件。Abstract: Electroless nickel plating wastewater was treated by ozone catalytic oxidation with a type of Fe2O3-TiO2-MnO2/A12O3 catalyst. The effects of different reaction conditions on the treatment performance were studied. The results showed that COD in wastewater decreased from 532 mg·L−1 to 285 mg·L−1, and the corresponding removal efficiency reached 46.4% under the optimize conditions: initial pH=9, O3 dosage of 300 mg·L−1 and oxidation time of 60 min. Ozone catalytic oxidation also presented a good effect on the breakage of the complexes for electroless nickel-plating wastewater. The Ni removal rate reached 86.7% after coagulation and filtration of ozone oxidized wastewater at initial pH=9, O3 dosage of 200 mg·L−1 and oxidation time of 60 min. Ultraviolet spectrum analysis showed that the absorption peaks of each band decreased significantly after ozone catalytic oxidation, and the absorption peaks at 254 nm and 320 nm almost disappeared, which indicates that the benzene-ring species and conjugated structure in the wastewater were destroyed. After ozone-catalyzed oxidation, the biological toxicity of wastewater was greatly reduced, and its biodegradability was improved. The B/C ratio of effluent increased from 0.12 to 0.36, which was beneficial for further biochemical treatment.
-
表 1 原水的活性污泥的好氧速率、MLSS及比耗氧速率
Table 1. Oxygen uptake rate, MLSS and specific oxygen consumption rate of activated sludge in raw wastewater
样品 OUR/(mg·(L·min)−1) MLSS/(mg·L−1) SOUR/(mg·(g·h)−1) 原水 0.142 2 2.20 3.87 对照样本 0.460 8 2.22 12.45 表 2 氧化出水的活性污泥的好氧速率、MLSS及比耗氧速率
Table 2. Oxygen uptake rate, MLSS and specific oxygen consumption rate of activated sludge in oxidized wastewater effluent
样品 OUR/(mg·(L·min)−1) MLSS/(mg·L−1) SOUR/(mg·(g·h)−1) 原水 0.200 5 2.10 5.73 对照样本 0.321 4 2.12 9.10 -
[1] BULASARA V K, THAKURIA H, UPPALURI R, et al. Combinatorial performance characteristics of agitated nickel hypophosphite electroless plating baths[J]. Journal of Materials Processing Technology, 2011, 211(9): 1488-1499. doi: 10.1016/j.jmatprotec.2011.03.022 [2] SHAO Z, CAI Z, HU R, et al. The study of electroless nickel plating directly on magnesium alloy[J]. Surface & Coatings Technology, 2014, 249: 42-47. [3] 符丽纯, 戴建军, 陈利芳, 等. 基于树脂吸附的电镀废水深度处理工程实例[J]. 水处理技术, 2018, 44(1): 128-131. [4] 程仁振, 邱立平, 刘贵彩, 等. 陶瓷膜-反渗透工艺用于电镀废水深度处理[J]. 中国给水排水, 2018, 34(14): 41-45. [5] SHI Y J, LIN C P, HUANG Y H, et al. Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater[J]. Separation and Purification Technology, 2013, 104: 100-105. doi: 10.1016/j.seppur.2012.11.025 [6] 刘洋. 化学镀镍废水中污染物去除工艺的研究[D]. 广州: 华南理工大学, 2015. [7] XU G R, SHEN T, MA Y Y, et al. Treatment of wastewater discharged from electroless nickel plating process by high-voltage pulsed electrocoagulation[J]. Electroplating & Finishing, 2017, 23(36): 1284-1287. [8] HUANG Y X, LUO M Y, XU Z H. Catalytic ozonation of organic contaminants in petrochemical wastewater with iron-nickel foam as catalyst[J]. Separation and Purification Technology, 2019, 221: 269-278. doi: 10.1016/j.seppur.2019.03.073 [9] LI X F, CHEN W Y, MA L M, et al. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst[J]. Chemosphere, 2018, 195: 336-343. doi: 10.1016/j.chemosphere.2017.12.080 [10] ZHUANG H, HAN H, JIA S, et al. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system[J]. Bioresource Technology, 2014, 157: 223-230. doi: 10.1016/j.biortech.2014.01.105 [11] 涂勇, 张耀辉, 徐军, 等. 臭氧对化工园区废水厂二级出水的选择性氧化[J]. 环境工程学报, 2015, 9(11): 2595-2300. [12] ZHUANG H, HAN H, HOU B, et al. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts[J]. Bioresource Technology, 2014, 166: 178-186. doi: 10.1016/j.biortech.2014.05.056 [13] HUANG G, PAN F, FAN G, et al. Application of heterogeneous catalytic ozonation as a tertiary treatment of effluent of biologically treated tannery wastewater[J]. Journal of Environmental Science and Health, 2016, 51(8): 626-633. [14] 张耀辉, 涂勇, 唐敏, 等. Fe2O3-TiO2-MnO2/A12O3催化臭氧化催化剂的制备及表征[J]. 中国环境科学, 2016, 36(10): 3003-3009. doi: 10.3969/j.issn.1000-6923.2016.10.023 [15] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [16] 荣宏伟, 李健中, 张可方. 铜对活性污泥微生物活性影响研究[J]. 环境工程学报, 2010, 4(8): 1709-1713. [17] 徐军, 涂勇, 武倩, 等. 臭氧、臭氧/双氧水催化氧化深度处理化工废水[J]. 工业水处理, 2017, 37(4): 62-65. doi: 10.11894/1005-829x.2017.37(4).015 [18] TAMURA H, TANAKA A, KY M, et al. Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity[J]. Journal of Colloid & Interface Science, 1999, 209(1): 225-231. [19] NADEZHDIN A D. Mechanism of ozone decomposition in water: Therole of termination[J]. Industrial & Engineering Chemistry Research, 1988, 27(4): 548-550. [20] 陈炜彧, 李旭芳, 马鲁铭. 铁基催化剂催化臭氧深度处理煤化工废水[J]. 环境工程学报, 2018, 12(1): 86-92. doi: 10.12030/j.cjee.201706031 [21] 王兵, 周望, 任宏洋, 等. MgO催化臭氧氧化降解苯酚机理研究[J]. 环境科学学报, 2016, 36(11): 4009-4016. [22] 王海燕, 蒋展鹏, 杨宏伟. 电助光催化氧化过程中羟基自由基(OH·)的定量分析[J]. 环境工程学报, 2008, 2(2): 225-228. [23] 关智杰, 郭艳平, 区雪连, 等. 臭氧预破络-重金属捕集耦合体系高效去除废水中络合态镍的机理研究[J]. 环境科学学报, 2019, 39(6): 1754-1762. [24] 张雪, 丁鑫, 杨浈, 等. 腐殖质氧化还原官能团测定新方法[J]. 环境化学, 2016, 35(10): 2106-2116. [25] 蒋绍阶, 刘宗源. UV254作为水处理中有机物控制指标的意义[J]. 重庆建筑大学学报, 2002, 24(2): 61-65. [26] 荣宏伟, 张耀坤, 张朝升, 等. INT·ETS活性及AUR和SOUR表征污泥活性的比较[J]. 环境科学研究, 2016, 29(5): 767-773. [27] 杨茜, 于茵, 周岳溪, 等. 石化工业园区有毒废水来源识别研究[J]. 环境科学, 2014, 35(12): 4582-4588. [28] 周洪政, 刘平, 张静, 等. 微气泡臭氧催化氧化-生化耦合处理难降解含氮杂环芳烃[J]. 中国环境科学, 2017, 37(8): 2978-2985. doi: 10.3969/j.issn.1000-6923.2017.08.021