-
近年来,在污染场地修复领域,原位修复技术的应用所占比例逐年增加[1]。其中原位热脱附技术由于具有无须开挖、转运土方以及污染物去除彻底的优势而被应用到越来越多的污染场地治理中[2-5]。原位热脱附技术是一种通过加热土壤促使污染物挥发并对其进行集中处理的土壤修复方法[6],依据加热方式的不同,常用的原位热脱附方法包括热传导、电阻加热以及蒸汽加热3种类型,其中热传导方法包括电加热热传导与燃气加热热传导[7-9]。原位热脱附技术对污染物的去除率非常高,它可以有效地应用于非均相和低渗透性的土壤中[10]。截至目前,国内应用此技术的工程项目及中试案例已达20余例。但原位热脱附技术也存在能耗大、修复成本高的问题[7,11],如上海市某有机污染场地开展的原位热脱附中试结果显示,使用该技术修复成本为2 000~2 800 元·m−3[8]。对于水文地质条件复杂与地下存在空洞、空腔情况的大型污染场地,在应用过程中单一使用原位热脱附技术热损失较大[7,12]。
目前,不同修复技术手段的组合应用逐渐成为主流[6,9-14],尤其是针对大型复杂污染场地的不同地块、不同分层、不同介质(污染土壤与地下水)或者修复的不同阶段,往往采取多种技术手段[11-20]进行修复。原位化学氧化是向土壤或地下水的污染区域注入氧化剂,通过氧化作用促使污染物转化为无毒或者毒性较小的物质[21];原位生物修复是指通过建设注入井等方式向土壤中供给空气、氧气、营养液或者高效降解菌,依靠微生物的代谢活动促进污染物的降解[22-23]。与原位热脱附技术相比,原位化学氧化与微生物降解是应用较早且较多的传统土壤修复方法[24-29],原位化学氧化方法通常具有处理成本低的优势,但不适宜于黏性介质以及有机质含量高的污染土壤,主要原因是存在污染反弹、对污染物去除不彻底[27,30-31]以及药剂消耗量大等问题[11,32],同时对于低渗透性介质(如黏土),很难通过原位注射使氧化剂与地下环境中的污染物有效接触[6,30,32]。另外,化学氧化将土壤中污染物修复至背景值或者使其浓度降至极低的情况,这可能在技术和经济方面代价较大,还可能造成含水层化学性质的改变以及由于孔隙中的矿物沉淀而造成含水层的堵塞[10]。微生物技术是一种很有应用前景的绿色可持续污染场地修复方法[33-34],尤其是针对石油烃污染的场地[35-36]。但是该方法也存在修复周期长以及在某些复杂环境条件下难以适用的缺点[10,32]。蒸汽强化气相抽提利用蒸汽作为热源加热土壤,促进有机污染物的解吸,同时联合气相抽提技术,实现对土壤污染物的去除,该方法适用于处理渗透性好的污染场地中有机污染物的去除[19,37],甚至适用于地下水流速较大的场地,但不适用于渗透性差的夹层污染土壤的修复[11]。
综上所述,单一的原位热脱附、原位化学氧化与微生物降解等土壤修复技术各有利弊。氧化剂的活性直接影响原位化学氧化技术的修复效果,而加热处理可以增强某些氧化剂(如过硫酸盐类)的活性,从而增强其对污染物的削减;环境温度是影响微生物活动的重要因素,适度的升温处理可以提高微生物的降解性能。由于热传导原位热脱附技术的普适性(最高加热温度可达750~800 ℃),因此,利用蒸汽强化气相抽提难以去除的吸附于顽固介质中的污染物,原位热传导热脱附即为一种很好的处理方法[38-41]。以上热处理的优势为原位热脱附技术与其他技术的耦合提供了可行性,并且不同处理技术之间的耦合作用可以提高处理效率,实现优势互补,也为降低综合能耗与修复成本提供了潜在的可能性。因此,与单一高耗能的原位热脱附技术相比,研究化学氧化、微生物降解以及其他加热方式与原位热脱附技术的耦合作用具有非常重要的现实意义。
污染场地修复中原位热脱附技术与其他相关技术耦合联用的意义、效果及展望
Significance, effects and prospect of in-situ thermal desorption coupled with other related technologies in the contaminated site remediation
-
摘要: 在有机污染场地修复过程中,原位热脱附技术因具有土方不开挖、不转运、对周围环境干扰小以及污染物去除彻底等诸多优势,故其应用范围逐渐增多。但该技术也存在修复施工成本相对较高的弊端,且此弊端主要是由于采用单一热脱附技术能耗很高的原因造成的。原位热脱附技术与化学氧化、微生物降解以及蒸汽注射等手段的耦合可以很好地弥补这一不足,尤其是针对大型的复杂有机污染场地。针对目前原位热脱附技术在应用过程中存在的主要问题,在分析了国内外大量相关研究与案例的基础上,梳理了原位热脱附与化学氧化、微生物降解及其他原位热处理等技术耦合的应用情况,提出了原位热脱附耦合技术的工程应用建议。Abstract: The technology of in-situ thermal desorption (ISTD) has been gradually applied on the remediation of contaminated sites due to its special advantages of no-excavation, no-transportation, less environmental disturbance and complete organic pollutants removal. However, it has an obvious disadvantage of the relatively high cost of remediation and construction due to high energy consumption of the single thermal desorption technology. ISTD coupled with other remediation technologies like chemical oxidation, microbial degradation and steam injection could make up for this disadvantage, especially for the large and complex contaminated site. Aiming at the main problems in the application of ISTD technology, the application status of ISTD coupled with chemical oxidation, biodegradation and other thermal technologies was introduced in this review. At the same time, the engineering application and research direction of ISTD coupled with other technologies are proposed.
-
Key words:
- contaminated site /
- in-situ thermal desorption /
- chemical oxidation /
- biodegradation /
- steam injection
-
[1] EPA. Superfund remedy report[R]. New York, 2017. [2] 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024. [3] 李书鹏, 焦文涛, 李鸿炫, 等. 燃气热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 13(9): 2037-2048. [4] 迟克宇, 李传维, 籍龙杰, 等. 原位电热脱附技术在某有机污染场地修复中的应用效果[J]. 环境工程学报, 2019, 13(9): 2049-2059. [5] VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation[J]. Engineering, 2016, 2(4): 426-437. [6] 张学良, 廖朋辉, 李群, 等. 复杂有机物污染地块原位热脱附修复技术的研究[J]. 土壤通报, 2018, 49(4): 993-1000. [7] 陈星, 宋昕, 吕正勇, 等. PAHs污染土壤的热修复可行性[J]. 环境工程学报, 2018, 12(10): 2833-2844. [8] 王锦淮. 原位热脱附技术在某有机污染场地修复中试应用[J]. 化学世界, 2018, 59(3): 182-186. [9] TZOVOLOU D N, AGGELOPOULOS C A, THEODOROPOULOU M A, et al. Remediation of the unsaturated zone of NAPL-polluted low permeability soils with steam injection: An experimental study[J]. Journal of Soils and Sediments, 2011, 11(1): 72-81. doi: 10.1007/s11368-010-0268-5 [10] 隋红, 李洪, 李鑫钢, 等. 有机污染土壤和地下水修复[M]. 北京: 科学出版社, 2013. [11] STROO H F, LEESON A, MARQUSEE J A, et al. Chlorinated ethene source remediation: Lessons learned[J]. Environmental Science & Technology, 2012, 46(12): 6438-6447. [12] FRIIS A K, ALBRECHTSEN H J, HERON G, et al. Anaerobic dechlorination and redox activities after full-scale electrical resistance heating (ERH) of a TCE-contaminated aquifer[J]. Journal of Contaminant Hydrology, 2006, 88: 219-234. doi: 10.1016/j.jconhyd.2006.07.001 [13] CALIMAN F A, ROBU B M, SMARANDA C, et al. Soil and groundwater cleanup: Benefits and limits of emerging technologies[J]. Clean Technologies and Environmental Policy, 2011, 13(2): 241-268. doi: 10.1007/s10098-010-0319-z [14] JOHNSEN A R, LIPTHAY J R D, REICHENBERG F, et al. Biodegradation, bioaccessibility and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site[J]. Environmental Science & Technology, 2006, 40(10): 3293-3298. [15] XU S, WANG W, ZHU L. Enhanced microbial degradation of benzo[J]. Science of the Total Environment, 2019, 653: 1293-1300. doi: 10.1016/j.scitotenv.2018.10.444 [16] AHMED I A C, JASON I G, DAVID R, et al. Low permeability zone remediation via oxidant delivered by electrokinetics and activated by electrical resistance heating: Proof of concept[J]. Environmental Science & Technology, 2017, 51(22): 13295-13303. [17] KHAITAN S, KALAINESAN S, ERICKSON L E, et al. Remediation of sites contaminated by oil refinery operations[J]. Environmental Progress, 2006, 25(1): 20-31. doi: 10.1002/(ISSN)1547-5921 [18] LI Y, LIAO X, HULING S G, et al. The combined effects of surfactant solubilization and chemical oxidation on the removal of polycyclic aromatic hydrocarbon from soil[J]. Science of the Total Environment, 2019, 647: 1106-1112. doi: 10.1016/j.scitotenv.2018.07.420 [19] NILSSON B, JECZALIK T M, KASELA T, et al. Combining steam injection with hydraulic fracturing for the in-situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel[J]. Journal of Environmental Management, 2011, 92(3): 695-707. doi: 10.1016/j.jenvman.2010.10.004 [20] ROLAND U, BUCHENHORST D, HOLZER F, et al. Engineering aspects of radio-wave heating for soil remediation and compatibility with biodegradation[J]. Environmental Science & Technology, 2008, 42: 1232-1237. [21] 中华人民共和国生态环境部. 污染场地修复技术目录: 第一批[S]. 北京, 2014. [22] GERSBERG R M, CARROQUINO M J, FISCHER D E, et al. In situ bioremediation of monoaromatic pollutants in groundwater: A review[J]. Bioresource Technology, 2008, 99(13): 5296-5308. doi: 10.1016/j.biortech.2007.10.025 [23] LEVAKOV I, RONEN Z, DAHAN O. Combined in-situ bioremediation treatment for perchlorate pollution in the vadose zone and groundwater[J]. Journal of Hazardous Materials, 2019, 369: 439-447. doi: 10.1016/j.jhazmat.2019.02.014 [24] 刘希涛. 活化过硫酸盐在环境污染控制中的应用[M]. 北京: 中国环境出版集团,2018. [25] KREMBS F J, SIEGRIST R L, CRIMI M L, et al. ISCO for groundwater remediation: Analysis of field applications and performance[J]. Groundwater Monitoring and Remediation, 2010, 30(4): 42-53. doi: 10.1111/gwmr.2010.30.issue-4 [26] MORILLO E, VILLAVERDE J. Advanced technologies for the remediation of pesticide-contaminated soils[J]. Science of the Total Environment, 2017, 586: 576-597. doi: 10.1016/j.scitotenv.2017.02.020 [27] MUNDLE1 K, REYNOLDS D A, WEST M R, et al. Concentration rebound following in situ chemical oxidation in fractured clay[J]. Groundwater, 2007, 45(6): 692-702. doi: 10.1111/gwat.2007.45.issue-6 [28] HULING S G, ROSS R R, PRESTBO K M. In situ chemical oxidation: Permanganate oxidant volume design considerations[J]. Groundwater Monitoring & Remediation, 2017, 37(2): 78-86. [29] BRUSSEAU M L, CARROLL K C, ALLEN T, et al. Impact of in situ chemical oxidation on contaminant mass discharge: Linking source-zone and plume-scale characterizations of remediation performance[J]. Environmental Science & Technology, 2011, 45: 5352-5358. [30] LIU Y, WANG S, WU Y, et al. Degradation of ibuprofen by thermally activated persulfate in soil systems[J]. Chemical Engineering Journal, 2019, 356: 799-810. doi: 10.1016/j.cej.2018.09.002 [31] PARDO F, SANTOS A, ROMERO A. Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: A column study[J]. Science of the Total Environment, 2016, 566: 480-488. [32] 庄国泰. 土壤修复技术方法与应用: 第一辑[M]. 北京: 中国环境科学出版社, 2011. [33] TENG Y, CHEN W. Soil microbiomes: A promising strategy for contaminated soil remediation[J]. Pedosphere, 2019, 29(3): 283-297. doi: 10.1016/S1002-0160(18)60061-X [34] HARMSEN J, RIETRA J J. 25 years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil[J]. Chemosphere, 2018, 207: 229-238. doi: 10.1016/j.chemosphere.2018.05.043 [35] XU X, LIU W, WANG W, et al. Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta[J]. Science of the Total Environment, 2019, 664: 1030-1038. doi: 10.1016/j.scitotenv.2019.02.080 [36] GAO S, LIANG J, TENG T, et al. Petroleum contamination evaluation and bacterial community distribution in a historic oilfield located in loess plateau in China[J]. Applied Soil Ecology, 2019, 136: 30-42. doi: 10.1016/j.apsoil.2018.12.012 [37] TRINE L S D, DAVIS E L, ROPER C, et al. Formation of PAH derivatives and increased developmental toxicity during steam enhanced extraction remediation of creosote contaminated superfund soil[J]. Environmental Science & Technology, 2019, 53(8): 4460-4469. [38] ZHAO C, DONG Y, FENG Y, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079 [39] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using PS: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40: 55-91. doi: 10.1080/10643380802039303 [40] BESHA A T, BEKELE D N, NAIDU R, et al. Recent advances in surfactant-enhanced in-situ chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers[J]. Environmental Technology & Innovation, 2018, 9: 303-322. [41] PERELO L W. Review: In situ and bioremediation of organic pollutants in aquatic sediments[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 81-89. [42] 朱长银. 过硫酸盐体系还原性自由基对氯代污染物的降解机制研究[D]. 南京: 中国科学院南京土壤研究所, 2018. [43] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(5): 898-908. [44] HORI H, NAGAOKA Y, MURAYAMA M, et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water[J]. Environmental Science & Technology, 2008, 42: 7438-7443. [45] EBERLE D, BALL R, THOMAS B, et al. Boving impact of ISCO treatment on PFAA co-contaminants at a former fire training area[J]. Environmental Science & Technology, 2017, 51: 5127-5136. [46] SONG Y, FANG G, ZHU C, et al. Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: An in situ pilot-scale study[J]. Chemical Engineering Journal, 2019, 355: 65-75. doi: 10.1016/j.cej.2018.08.126 [47] 吴昊, 孙丽娜, 李玉双, 等. 活化过硫酸钠去除长期污染土壤中的TPH[J]. 环境工程学报, 2016, 10(9): 5231-5237. doi: 10.12030/j.cjee.201504043 [48] CHEN L W, HUA X, CAI T, et al. Degradation of triclosan in soils by thermally activated persulfate under conditions representative of in-situ chemical oxidation (ISCO)[J]. Chemical Engineering Journal, 2019, 369: 344-352. doi: 10.1016/j.cej.2019.03.084 [49] WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products[J]. Environmental Science & Technology, 2007, 41: 1010-1015. [50] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1507. doi: 10.1016/j.cej.2017.11.059 [51] DEVI P, DAS U, DALAI A K. In-situ chemical oxidation: Principle and applications of peroxide and PS treatments in wastewater systems[J]. Science of the Total Environment, 2016, 571: 643-657. doi: 10.1016/j.scitotenv.2016.07.032 [52] ZRINYI N, PHAM A L. Oxidation of benzoic acid by heat-activated PS: Effect of temperature on transformation pathway and product distribution[J]. Water Research, 2017, 120: 43-51. doi: 10.1016/j.watres.2017.04.066 [53] JOHNSON R L, TRATNYEK P G, JOHNSON R O. PS persistence under thermal activation conditions[J]. Environmental Science & Technology, 2008, 42: 9350-9356. [54] ZENELI A, KASTANAKI E, SIMANTIRAKI F, et al. Monitoring the biodegradation of TPH and PAHs in refinery solid waste by biostimulation and bioaugmentation[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 2213-3437. [55] LI W, OROZCO R, CAMARGOS N, et al. Mechanisms on the impacts of alkalinity, pH, and chloride on persulfate-based groundwater remediation[J]. Environmental Science & Technology, 2017, 51: 3948-3959. [56] ZHOU Z, LIU X, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review[J]. Chemical Engineering Journal, 2019, 372(15): 836-851. [57] WANG Z, DENG D, YANG L. Degradation of dimethyl phthalate in solutions and soil slurries by persulfate at ambient temperature[J]. Journal of Hazardous Material, 2014, 271: 202-209. doi: 10.1016/j.jhazmat.2014.02.027 [58] Unified Facilities Criteria (UFC). Design: In situ thermal remediation[S]. Florida, USA: Air Force Civil Engineer Support Agency, 2006. [59] PENG L, DENG D, GUAN M, et al. Remediation HCHs POPs-contaminated soil by activated persulfate technologies: Feasibility, impact of activation methods and mechanistic implications[J]. Separation & Purification Technology, 2015, 150: 215-222. [60] PARK S, LEE L S, MEDINA V F, et al. Heat-activated persulfate oxidation of PFOA, 6∶2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation[J]. Chemosphere, 2016, 145: 376-383. doi: 10.1016/j.chemosphere.2015.11.097 [61] LEE Y C, LO S L, KUO J, et al. Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20~40 ℃[J]. Chemical Engineering Journal, 2012, 198-199: 27-32. doi: 10.1016/j.cej.2012.05.073 [62] YUKSELEN-AKSOY Y, KHODADOUST A P, REDDY K R. Destruction of PCB 44 in spiked subsurface soils using activated persulfate oxidation[J]. Water, Air & Soil Pollution, 2010, 209(1/2/3/4): 419-427. [63] COSTANZA J, MARCET J, CÁPIRO N L, et al. Tetrachloroethene release and degradation during combined ERH and sodium persulfate oxidation[J]. Groundwater Monitoring & Remediation, 2017, 37(4): 43-50. [64] WALDEMER R H, TRATNYEK P G, JOHNSON R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products[J]. Environmental Science & Technology, 2007, 41(3): 1010-1015. [65] HORVATH A, GETZEN F W, MACZYNSKA Z. Halogenated ethanes and ethenes with water[J]. Journal of Physical and Chemical Reference Data, 1999, 28: 395-627. doi: 10.1063/1.556039 [66] SHE H Y, SLEEP B. The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems[J]. Water Resources Research, 1998, 34: 2587-2597. doi: 10.1029/98WR01199 [67] USMAN M, CHAUDHARY A, BIACHE C, et al. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils[J]. Environmental Science and Pollution Research, 2016, 23(2): 1371-1380. doi: 10.1007/s11356-015-5369-7 [68] RICHARDSON R E, JAMES C A, BHUPATHIRAJU V K, et al. Microbial activity in soils following steam treatment[J]. Biodegradation, 2002, 13(4): 285-295. doi: 10.1023/A:1021257026932 [69] TOM P. Heat-enhanced bioremediation and destruction[R]. Washington, 2019. [70] MARCET T F, CAPIRO N L, YANG Y, et al. Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions[J]. Water Research, 2018, 145: 21-29. doi: 10.1016/j.watres.2018.07.076 [71] HUESEMANN M H, HAUSMANN T S, TIMOTHY F, et al. Evidence of thermophilic biodegradation for PAHs and diesel in soil[C]//Battelle Memorial Institute. Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterey, California, USA, 2002: 1921-1928. [72] 曾静, 郭建军, 邱小忠, 等. 极端嗜热微生物及其高温适应机制的研究进展[J]. 生物技术通报, 2015, 31(9): 30-37. [73] HERON G, CARROLL S, NIELSEN S G. Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance[J]. Groundwater Monitoring & Remediation, 2010, 25(4): 92-107. [74] SMITH C D M. White paper on thermal remediation technologies for treatment of chlorinated solvents[R]. California: Santa Susana Field Laboratory Simi Valley, 2018. [75] TERRA T. In-situ thermal desorption (ISTD) combined with steam enhanced extraction (SEE) at an active manufacturing facility in Florida[R]. Massachusetts, 2013.
计量
- 文章访问数: 6547
- HTML全文浏览数: 6547
- PDF下载数: 289
- 施引文献: 0