-
石油是由碳氢化合物组成的复杂混合物,主要包含烃类分子、非烃类分子以及金属有机化合物[1]。其中多环芳烃(PAHs)等难降解组分一旦进入土壤中,会形成累积效应,进而破坏生态环境,威胁人类健康[2]。此外,石油烃类污染物可能通过空气、水和土壤进一步迁移,逐步形成更广阔的污染区域。目前,石油烃污染土壤的修复技术主要有生物修复、化学修复及热修复等方法。热修复技术在工程应用方面具有修复周期短、处理效果好、能够同时去除多种有机污染物等优势。因此,在石油污染土壤修复实践中,热脱附技术应用较多[3-4]。热脱附技术主要通过直接或间接加热的方式将土壤中的有机污染物加热到足够的温度,使其从污染介质上得以挥发或分离,从而达到去除土壤有机污染物的目的[5-6]。从热源类型看,除了电能(ERH、TCH等)、燃气能(GTR等)、蒸汽能(SEE等)等传统形式外,近年来,逐渐将微波和超声波等新型热源应用于污染土壤热脱附修复中。
微波加热能量以电磁波的形式穿透土壤,加热水和有机污染物使其从土壤中挥发[7]。其能量传递方式具有选择性和穿透性,加热速率不再受到表层温度、温度梯度以及热传导性等因素制约,加热时间大为缩短,其加热本质是微波在土壤中的能量耗散[8-9]。FALCIGLIA 等[10]通过改变微波加热烃类污染土壤的类型及操作条件发现,土壤质地、含水率和入射电场等参数对微波穿透性和土壤升温变化具有显著影响,然而微波无法对深层土壤形成有效辐射且深层土壤的污染物在挥发过程中会有一定比例重新吸附,故该技术具有一定的缺陷。而超声波的空化效应可以提高土壤有机污染物的解吸附速率并降低污染物与土壤颗粒之间的结合度,其提高解吸附的原理是利用超声空化现象形成微小气泡,产生高温、高压、强烈的冲击波和微射流,从而在物理上达到解吸附作用[11]。张文等[12]的研究表明,超声空化引起的解吸作用和真空抽滤是土壤总石油烃减少的主要途径,但超声波修复石油污染土壤的影响因素及其可行性研究不够充分,且单一超声波热源热效应较低。理论上,将微波与超声波技术耦合能克服各自缺点,促进土壤中污染物的脱附效果[13]。在已有研究的基础上,本研究耦合超声波与微波技术修复石油污染土壤,探索修复效果的影响因素和脱附规律,以期为石油烃类污染土壤热脱附技术提供参考。
基于超声波-微波耦合效应的石油烃类污染土壤的热脱附规律与参数优化
Thermal desorption behavior and parameters optimization for oil contaminated soil remediation based on microwave-ultrasonic coupling effect
-
摘要: 以邻二甲苯为石油烃类污染物代表,以污染土壤质量的减少量以及冷凝液质量的增加量表征土壤污染物的平均脱附效率,研究了微波-超声波耦合热源处理石油烃类污染土壤的脱附规律。结果表明,在超声波功率恒定(800 W)情况下,增大微波功率 (从200 W增到400 W),能显著提升装置内反应温度(从128.3 ℃增到270.1 ℃),显示了微波较强的热效应;在微波功率恒定(350 W)情况下,增大超声波功率 (从600 W增到1 400 W),对装置升温效果影响不明显(从169.4 ℃增加到187.9 ℃),表明了超声波较弱的热效应。超声波/微波耦合热源修复壤土的最优工艺参数为土水比20∶1、超声波功率800 W、微波功率350 W、辐照10 min,相应的最高污染物平均脱附率为77.28%,处理效果优于单热源条件。对于不同的土壤粒径及有机质含量,不同类型土壤的平均脱附率排序为砂土(88.36%)>壤土(64.29%)>黏土(52.61%);综合考虑土壤介电损耗因子、土壤比热容、土壤通透性影响的结果,土水比最优值设为10∶1;综合考虑土壤颗粒单层吸附/多层吸附作用的结果,土壤污染物浓度最优值为8%(砂土)、4%(壤土、黏土)。Abstract: Petroleum hydrocarbon contaminated soil was treated by microwave-ultrasonic coupling desorption, with 1,2-dimethylbenzene as a kind of representative pollutant. The average desorption efficiencies were characterized by the reduction of soil quality and the increase of condensate quality. The results showed that the reaction temperatures increased significantly from 128.3 ℃ to 270.1 ℃ when microwave power increased from 200 W to 400 W at a constant ultrasonic power of 800 W, indicating the strong thermal effect derived from microwave. The heating temperatures fluctuated between 169.4 ℃ and 187.9 ℃ when ultrasonic powers increased from 600 W to 1 400 W at a constant microwave power of 350 W, indicating the weak thermal effect derived from ultrasonic waves. The optimal process parameters of loam soil remediation with the coupled ultrasonic/microwave were as follows: soil-water ratio of 20:1, ultrasonic power of 800 W, microwave power of 350 W, 10 min irradiation, and the corresponding highest average desorption rate was 77.28%, which was better than that with single heat source. In view of different soil particle size and organic matter content, the average desorption rates for different types of soil were ranked as sandy soil (88.36%) > loam soil (64.29%) > clay soil (52.61%). The optimal soil-water ratio was 10∶1, which was a comprehensive effecting result of the soil dielectric loss factor, specific heat capacity and permeability. The optimal concentration of soil pollutants was 8% for sandy soil, and 4% for loam soil and clay soil, which were the comprehensive results of single-layer/multi-layer adsorption of soil particles.
-
Key words:
- petroleum hydrocarbons /
- soil remediation /
- thermal desorption /
- microwave /
- ultrasonic
-
表 1 实验用土壤样品的粒径级配
Table 1. Particle size grading of soil samplesused in the experiment
土壤质地 粒径级配/% 50~2 000 µm 2~50 µm < 2 µm 砂土 81.98 9.98 8.04 壤土 35.36 47.48 17.16 黏土 30.12 24.01 45.87 -
[1] SAYEGHL A A, WAHAIBIL Y A, JOSHI S. Bioremediation of heavy crude oil contamination[J]. The Open Biotechnology Journal, 2016, 10(1): 301-311. doi: 10.2174/1874070701610010301 [2] RUBY M V, LOWNEY Y W, BUNGE A L, et al. Oral bioavailability, bioaccessibility, and dermal absorption of PAHs from soil-state of the science[J]. Environmental Science & Technology, 2016, 50(5): 2151-2164. [3] 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024. [4] 迟克宇, 李传维, 籍龙杰, 等. 原位电热脱附技术在某有机污染场地修复中的应用效果[J]. 环境工程学报, 2019, 13(9): 2049-2059. [5] GOMES H I, FERREIRA C D. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application[J]. Science of the Total Environment, 2013, 445-446: 237-260. doi: 10.1016/j.scitotenv.2012.11.098 [6] SIERRA M J, MILL N R, LOPEZ F A, et al. Sustainable remediation of mercury contaminated soils by thermal desorption[J]. Environmental Science & Pollution Research, 2016, 23(5): 4898-4907. [7] 易辰博. 微波热修复有机物污染场地土壤技术进展[J]. 江西科学, 2015, 33(1): 116-121. [8] BUTTRESS A J, BINNER E, YI C, et al. Development and evaluation of a continuous microwave processing system for hydrocarbon removal from solids[J]. Chemical Engineering Journal, 2016, 283: 215-222. doi: 10.1016/j.cej.2015.07.030 [9] 艾军勇, 张道勇, 牟书勇, 等. 超声波/紫外线-Fenton反应联用去除克拉玛依土壤中石油类污染物[J]. 环境工程学报, 2012, 6(3): 983-988. [10] FALCIGLIA P P, SCANDURA P. Modelling of in situ microwave heating of hydrocarbon-polluted soils: Influence of soil properties and operating conditions on electric field variation and temperature profiles[J]. Journal of Geochemical Exploration, 2016, 174: 91-99. [11] SHI C, WEI Y, CHEN J. Application and mechanism of ultrasonic static mixer in heavy oil viscosity reduction[J]. Ultrasonics Sonochemistry, 2017, 37: 648-653. doi: 10.1016/j.ultsonch.2017.02.027 [12] 张文, 李建兵, 韩有定, 等. 超声波净化石油污染土壤实验研究[J]. 环境工程学报, 2010, 4(4): 940-945. [13] 吕顺亮, 王仪超, 徐炎华, 等. 微波耦合超声波技术处理柴油污染土壤[J]. 环境科学与技术, 2016, 39(s2): 304-307. [14] CLARK D E, FOLZ D C, WEST J K. Processing materials with microwave energy[J]. Materials Science & Engineering A, 2000, 287(2): 153-158. [15] 刘珑, 王殿生, 曾秋孙, 等. 微波修复石油污染土壤升温特性影响因素的实验研究[J]. 环境工程学报, 2011, 5(4): 898-902. [16] AMANI M, RETNANTO A, ALJUHANI S, et al. Investigating the role of ultrasonic wave technology as an asphaltene flocculation inhibitor: An experimental study[C]//IPTC Program Committee. International Petroleum Technology Conference, Doha, Qatar, 2015: 1-7. [17] 黄欣桐, 周翠红, 郭艳彤. 超声应用于超重质渣油降黏的实验研究[J]. 北京石油化工学院学报, 2018, 26(1): 9-13. doi: 10.12053/j.issn.1008-2565.2018.01.003 [18] MASON T J, COLLINGS A F, SUMEL A. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale[J]. Ultrasonics Sonochemistry, 2004, 11(3): 205-210. [19] 孙磊, 蒋新, 周健民, 等. 五氯酚污染土壤的热修复初探[J]. 土壤学报, 2004, 41(3): 462-465. doi: 10.3321/j.issn:0564-3929.2004.03.021 [20] 祝红, 张焕祯, 毕璐莎. 超声波-表面活性剂修复柴油污染土壤实验研究[J]. 环境工程, 2016, 34(4): 181-185.