-
矿山开发导致硫化矿物暴露于氧化环境中,产生大量的酸性矿山废水(acid mine drainage,AMD),AMD具有低pH、高重金属和硫酸盐的特点[1-3],会对矿区周围水生和土壤生态系统造成严重污染。传统处理方法为化学沉淀法[4],如石灰中和,但其存在废渣产量大、重金属含量高、金属资源浪费等问题,故限制了其大规模的应用。
硫酸盐还原菌(sulfate reducing bacteria,SRB)生物处理技术是一种有效治理AMD的方法,其主要反应过程为:SRB在还原氛围中将
${\rm{SO}}_4^{2 - }$ 还原为S2−,代谢产物S2−与AMD中重金属离子形成硫化矿物[5-7]。但SRB活性易受AMD (酸、重金属)、代谢产物S2−等毒性抑制,从而导致其处理AMD效率降低。周立祥[8]和狄军贞等[9]发现,SRB最适pH为中性,在pH<5的AMD中,其处理活性较差。UTGIKAR等[10]、GUO等[11]、曹恒恒等[12]发现,Zn2+、Cu2+(≥20 mg·L−1)等重金属对SRB具有毒性抑制作用,且金属硫化物(金属离子与生物硫化物反应形成)是阻碍硫酸盐、有机物进入生物体系的屏障。LEWIS等[13]将SRB生化出水直接与AMD混合反应,发现水相中多硫化物络合物不利于金属去除,且金属沉淀物中包含未知复合物。BIJMANS等[14]报道,硫化物会抑制SRB生长,硫化物的去除可提高SRB活性。汪琦[15]采用两级循环气提工艺,有效解除了H2S对菌群(SRB、产酸菌、产甲烷菌)的毒性抑制。任立人等[16]采用两相厌氧-气提生化法,有效地解除了H2S对高含硫抗生素有机废水内SRB、产甲烷菌的毒性抑制。上述研究仅提出了对SRB活性抑制因素和单一因素的解除,鲜少涉及全面解除SRB(处理AMD)的多重毒性抑制和有效促进SRB活性的研究。本研究采用气提内循环反应器对AMD进行了处理,考察了反应器内涉硫组分的演变、产碱效率、微生物群落结构、重金属的去除,并对重金属沉淀物的纯度进行了分析;综合评估了气提内循环反应器内毒性抑制的解除效果及重金属回收,为AMD的SRB处理及有价金属回收提供应用指导和参考。
基于硫酸盐还原菌的气提内循环反应器处理酸性矿山废水
Treatment of acid mine drainage by a gas stripping internal circulation reactor with sulfate reducing bacteria
-
摘要: 针对硫酸盐还原菌(SRB)处理酸性矿山废水(AMD)易受酸、重金属、代谢产物硫离子等多重毒性抑制的问题,采用气提内循环反应器对AMD进行处理,研究了反应器内涉硫组分的演变、产碱效率、微生物群落结构、重金属的去除效果。结果表明:气体内循环反应器可有效解除多重毒性抑制,体系中硫酸盐去除率由36.5%提升至91.24%;且其产碱效率提升了3倍,明显优于传统反应器,脱硫弧菌属的相对丰度也由48%提升至73%;硫化氢与重金属反应得到金属硫化物纯度可达98.12%,出水中Cu2+和Zn2+浓度分别为0和2 mg·L−1,可达到《污水综合排放标准》二级标准。以上结果可为SRB生物技术处理AMD的高效控制提供参考。Abstract: The treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB) was susceptible to multiple toxicity inhibition such as acid, heavy metal and metabolic sulfur ion. In this study, the gas stripping internal circulation reactor was used to treat AMD, the evolution of sulfur-related components in the reactor, alkali production efficiency, microbial community structure and heavy metals removal were studied. The results showed that the gas stripping internal circulation reactor could effectively eliminate multiple toxicity inhibition, the sulfate removal rate in the system increased from 36.5% to 91.24%, and its alkali production efficiency increased by 3 times, which was obviously superior to the traditional reactor, the relative abundance of Desulfovibrio increased from 48% to 73%. The purity of metal sulfide precipitated by hydrogen sulfide and heavy metals reached 98.12%, the concentrations of Cu2+ and Zn2+ in the effluent were 0 and 2 mg·L−1, respectively, which could reach the secondary standard of Integrated Wastewater Discharge Standard. This study can provide reference for the efficient control of SRB biotechnology treating AMD.
-
表 1 出水中重金属离子浓度
Table 1. Concentration of heavy metal ions in effluent
mg·L−1 反应器种类 Cu2+ Zn2+ Fe2+ Mn2+ 气提内循环反应器 0 2 19.61 3.8 传统反应器 0.72 23.58 146.66 23.8 -
[1] SÁNCHEZ-ANDREA I, SANZ J L, BIJMANS M F, et al. Sulfate reduction at low pH to remediate acid mine drainage[J]. Journal of Hazardous Materials, 2014, 269: 98-109. doi: 10.1016/j.jhazmat.2013.12.032 [2] 陈莹, 陈炳辉, 邹琦, 等. 粤北大宝山AMD水-表层沉积物的重金属分布特征及其影响因素[J]. 环境科学学报, 2018, 38(1): 133-141. [3] 曹霏霏, 李红丽, 王岩. 干式厌氧消化过程挥发酸对硫酸盐还原菌的影响[J]. 环境工程学报, 2014, 8(3): 1169-1173. [4] ZHANG M L, WANG H X. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis[J]. Minerals Engineering, 2016, 92: 63-71. doi: 10.1016/j.mineng.2016.02.008 [5] YOREO J J D, GILBERT P U P A, SOMMERDIJK N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): 6760. doi: 10.1126/science.aaa6760 [6] 蒋永荣, 刘可慧, 刘成良, 等. UASB处理硫酸盐有机废水的启动[J]. 环境工程学报, 2014, 8(9): 3572-3576. [7] 李咏兰, 邱广亮, 王凯, 等. 磁性多孔微球固定化硫酸盐还原菌的研究[J]. 环境工程学报, 2011, 5(12): 2825-2829. [8] 周立祥. 生物矿化: 构建酸性矿山废水新型被动处理系统的新方法[J]. 化学学报, 2017, 75(6): 552-559. [9] 狄军贞, 江富, 朱志涛, 等. 混合硫酸盐还原菌处理煤矿酸性废水的固定载体研究[J]. 中国给水排水, 2015, 31(7): 100-108. [10] UTGIKAR V P, HARMON S M, CHAUDHARY N, et al. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage[J]. Environmental Toxicology, 2010, 17(1): 40-48. [11] GUO J, KANG Y, FENG Y. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron[J]. Journal of Environmental Management, 2017, 203(1): 278-285. [12] 曹恒恒, 张鸿郭, 罗定贵, 等. 重金属对硫酸盐还原菌影响[J]. 环境科学与技术, 2012, 35(12): 208-211. doi: 10.3969/j.issn.1003-6504.2012.12.043 [13] LEWIS A, HILLE R V. An exploration into the sulphide precipitation method and its effect on metal sulphide removal[J]. Hydrometallurgy, 2006, 81(3/4): 197-204. [14] BIJMANS M F, DOPSON M, ENNIN F, et al. Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor[J]. Journal of Microbiology and Biotechnology, 2008, 18(11): 1809-1818. [15] 汪琦. 乙醇对硫酸盐还原-甲烷发酵效率影响的研究[J]. 环境科学, 2009, 30(3): 924-929. doi: 10.3321/j.issn:0250-3301.2009.03.050 [16] 任立人, 张琳, 仝胜利, 等. 高含硫抗生素有机废水处理[J]. 水处理技术, 2001, 27(4): 225-228. doi: 10.3969/j.issn.1000-3770.2001.04.012 [17] FIRMINO P I M, FARIAS R S, BUARQUE P M C, et al. Engineering and microbiological aspects of BTEX removal in bioreactors under sulfate-reducing conditions[J]. Chemical Engineering Journal, 2015, 260: 503-512. doi: 10.1016/j.cej.2014.08.111 [18] ZHAO F, ZHOU J D, MA F, et al. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery[J]. Bioresource Technology, 2016, 207: 24-30. doi: 10.1016/j.biortech.2016.01.126 [19] DENG D, WEIDHAAS J L, LIN L S. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage[J]. Journal of Hazardous Materials, 2016, 305: 200-208. doi: 10.1016/j.jhazmat.2015.11.041 [20] MUYZER G, STAMS A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6: 441-454. doi: 10.1038/nrmicro1892 [21] 郭旭颖, 里莹, 董艳荣, 等. SRB协同自燃煤矸石处理含Fe2+、Mn2+煤矿废水研究[J]. 工业水处理, 2018, 38(6): 22-26. doi: 10.11894/1005-829x.2018.38(6).022 [22] WU P, ZHANG G M, LI J Z, et al. Effects of Fe2+ concentration on biomass accumulation and energy metabolism in photosynthetic bacteria wastewater treatment[J]. Bioresource Technology, 2012, 119: 55-59. doi: 10.1016/j.biortech.2012.05.133 [23] 徐亦寒, 孔殿超, 岳正波, 等. 针铁矿对硫酸盐还原菌分解铅矾的影响[J]. 环境科学学报, 2017, 37(5): 1688-1694. [24] 宋福强. 微生物生态学[M]. 北京: 化学工业出版社, 2008. [25] SAHINKAYA E, YUCESOY Z. Biotreatment of acidic zinc- and copper-containing wastewater using ethanol-fed sulfidogenic anaerobic baffled reactor[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 989-997. doi: 10.1007/s00449-010-0423-9 [26] SAHINKAYA E, DURSUN N, OZKAYA B, et al. Use of landfill leachate as a carbon source in a sulfidogenic fluidized-bed reactor for the treatment of synthetic acid mine drainage[J]. Minerals Engineering, 2013, 48(4): 56-60.