-
我国城市给水厂每年所产生的污泥约为1.5×108 m3[1],其中含有大量的有机物、重金属以及致病菌和病原菌等,若不加处理任意排放,将成为危险的二次污染源,通过大气、地下水、地表水和土壤等介质进入食物链,造成严重的生态风险,影响人类健康[2]。作为给水厂的伴生产物,目前城市给水厂污泥有效资源转化率不足10%,且大多数采用卫生填埋、焚烧、土地利用[3]和投海等传统方法处理污泥,既不能有效利用可再用资源,又容易造成二次污染。给水厂污泥中不仅含有大量的铁盐、铝盐混凝剂成分,还含有活性炭组分[4],将给水厂污泥制成颗粒状吸附剂用于吸附除磷,可以降低给水厂污泥处置费用,同时污水除磷成本也大大低于化学除磷。给水厂污泥吸附除磷不会增加污泥量,不容易受出水SS、原水水质、脱氮条件等影响,去除率远高于传统生物除磷法。采用给水厂污泥吸附污水中的磷,变废为宝,还可以达到资源化利用的目的。
有关给水厂污泥吸附除磷的研究工作多采用静态吸附搅拌的方法[5-8],该方法用于实验室的实验研究是行之有效的,但难以在实际生产中推广使用。本研究以北京市某给水厂废弃污泥为原材料,制备成颗粒状吸附剂,并将其用于连续处理初沉池水的动态吸附实验中,为给水厂的污泥在实际生产中的应用提供参考。
城市给水厂污泥对污水中磷的动态吸附
Dynamic adsorption of phosphorus in primary settling water by water treatment residuals in municipal water supply plant
-
摘要: 以城市给水厂污泥为原料,制备了2种不同粒径的颗粒状吸附剂,探讨了这2种颗粒吸附剂不同应用方式动态吸附初沉池水中磷的效果,并对吸附的影响因素进行了探究。结果表明,在使用2 mm粒径的吸附剂进行动态吸附时,在颗粒投加量固液比为20 g·L−1的条件下,运行8 h后,出水磷浓度最低, 总磷、可溶性总磷、可溶性活性磷酸盐的出水浓度分别可达到1.52、0.27、0.16 mg·L−1。干化大颗粒的固定床吸附实验结果表明,空床停留时间应控制在30 min左右,有效滤层高度为11.5 cm,滤柱连续运行前80 h,对初沉池水有良好的处理效果,为该吸附剂投入使用提供了初步依据。对给水厂污泥颗粒吸附剂进行了技术经济分析,得出颗粒吸附剂理论上处理初沉池水所需药剂费用为0.021 2元·t−1,具有较高的经济效益。以上结果可为给水厂的污泥在实际生产中的应用提供参考。Abstract: Two kinds of granular adsorbents with different particle sizes were prepared from water treatment residuals in municipal water supply plant. The dynamic adsorption of phosphorus in primary settling water by these two adsorbents under different application modes was investigated, as well as the effects of the impact factors on phosphorus absorption. The results showed that during dynamic adsorption with the granular adsorbent of 2 mm size, the effluent phosphorus concentration reached the lowest after 8 h running at the solid-liquid ratio of 20 g·L−1, and the effluent concentrations of total phosphorus, soluble total phosphorus and soluble active phosphate were 1.52, 0.27 and 0.16 mg· L−1, respectively. The fixed bed adsorption test with the dried large particles showed that the residence time of the empty bed should be controlled at about 30 min, the height of effective filter layer was 11.5 cm, and a good treatment effect occurred for the water from primary sink during the first 80 h continuous operation of the filter column, which provides a preliminary basis for the use of the adsorbent. The technical and economic analysis of granular adsorbent from water treatment residuals in municipal water supply plant showed that the theoretical cost for primary settling water treatment was 0.021 2 yuan per ton, which had high economic benefits.
-
Key words:
- municipal water supply plant /
- iron-aluminum sludge /
- dynamic adsorption /
- fixed bed /
- phosphorus form
-
表 1 废弃铁铝泥粉末的组分分析结果
Table 1. Composition analysis of waste Iron and aluminum sludge powder
元素 质量分数/% 元素 质量分数/% 元素 质量分数/% C 10.5 Cl 0.29 Zn 0.007 4 O 51.9 K 0.451 As 0.009 8 Na 0.173 Ca 2.78 Br 0.004 1 Mg 0.434 Mn 0.128 Rb 0.002 8 Al 6.74 Ti 0.117 Sr 0.011 1 Fe 15.9 V 0.017 2 Zr 0.005 1 Si 8.81 Cr 0.009 6 Mo — N 1.26 Co — Pb — P 0.069 1 Ni 0.004 Ba 0.023 2 S 0.323 Cu 0.004 U — 表 2 2种不同硬度颗粒的性能比较
Table 2. Comparison of performance of particles with two different hardness
颗粒种类 尺寸/mm 硬度/N 脱落率/% 比表面积/
(m2·g−1)微孔体积/
(cm3·g−1)总孔吸附
平均直径/nm理论吸附量/
(mg·g−1)高 直径 干化大颗粒 12 7 30.31 10 68.53 0.008 9 4.08 5.24 2 mm颗粒 — 2 24.70 16 127.29 0.013 4 4.12 12.39 -
[1] 程雪莉. 给水厂污泥资源化利用研究[D]. 西安: 西安建筑科技大学, 2014. [2] 柳青. 城市污水处理厂污泥农肥化关键技术研究[D]. 沈阳: 东北大学, 2008. [3] 许晓毅, 罗固源, 韦玮, 等. 供水厂排泥对土壤固磷及理化特性的影响研究[J]. 工业用水与废水, 2007, 38(2): 85-89. doi: 10.3969/j.issn.1009-2455.2007.02.027 [4] 仇付国. 含铝活性炭污泥对磷的吸附特性研究[J]. 环境污染与防治, 2016, 38(5): 1-5. [5] 仇付国, 孙瑶, 陈丽霞. 给水厂铝污泥特性分析及吸附氮磷性能试验[J]. 环境工程, 2016, 34(4): 54-59. [6] 陈毅忠, 王利平, 杜尔登, 等. 自来水厂脱水铝污泥对水中磷的吸附去除研究[J]. 中国给水排水, 2011, 27(23): 88-91. [7] 高思佳, 王昌辉, 裴元生. 热活化和酸活化给水处理厂废弃铁铝泥的吸磷效果[J]. 环境科学学报, 2012, 32(3): 606-611. [8] 高思佳, 王昌辉, 裴元生. pH对活化前后废弃铁铝泥吸附不同种磷动力学的影响[J]. 环境工程学报, 2013, 7(9): 3263-3269. [9] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [10] SONG X, PAN Y, WU Q, et al. Phosphate removal from aqueous solutions by adsorption using ferric sludge[J]. Desalination, 2011, 280(1/2/3): 384-390. [11] 仇付国, 张传挺. 水厂铝污泥资源化利用及污染物控制机理[J]. 环境科学与技术, 2015, 38(4): 21-26.