-
水资源安全问题已经成为全世界关注的焦点。氟是人体必需的微量元素,但是由于地质及工业排放原因,在常规水处理过程又缺乏针对氟离子的专门处理技术,饮用水中氟离子超标会导致氟中毒以及认知障碍、焦虑、抑郁和神经损伤[1-4]。世界卫生组织(WHO)建议饮用水中氟离子浓度在0.5~1.5 mg·L−1。但是据报道,在全球范围内至少有25个国家的6 200万人受到饮用水中氟化物含量过高的影响[5]。目前,去除饮用水中氟离子的方法主要有反渗透法、离子交换法、化学沉淀法和吸附法等。吸附法具有出水水质稳定、工艺流程简单、经济实惠等优点[6],但是存在吸附时间长、会造成二级污染等问题。
介电泳是在非均匀电场中控制中性可极化微粒的运动[7]。同时,介电泳可以通过捕获吸附了污染物的吸附剂来对污染物进行去除。BATTON等[8]首次研究了利用介电泳捕获吸附重金属的羟基磷灰石,吸附了Pb2+的羟基磷灰石微粒被非均匀电场捕获。本研究采用吸附和介电泳结合的技术提高饮用水中F−的去除率,探讨了吸附剂种类及其投加量、外加电压对F−去除效果的影响,并通过SEM表征、吸附热力学等方法探究了其可能的吸附机理,为解决饮用水中氟离子的去除提供一种快速、高效的新方法。
介电泳增强吸附法去除饮用水中的氟离子
Removing fluoride ion from drinking water by dielectrophoresis-enhanced adsorption
-
摘要: 高氟水的危害引起了人们的广泛关注。为减少饮用水中含量过高的氟离子(F−),基于介电泳技术建立了一种新的去除水体中F−的方法,组装了介电泳装置,将介电泳技术和吸附法结合,增强了对F−的去除效果。探讨了吸附剂种类、投加量和外加电压对于F−去除效果的影响,并用SEM对电极进行表征。结果表明,羟基磷灰石对F−具有最佳的吸附性能,其饱和吸附量为5.88 mg·g−1,Langmuir吸附等温方程能够很好地描述羟基磷灰石对F−的吸附热力学行为,说明吸附满足单分子层吸附模型。在优化的实验条件下(羟基磷灰石投加量6 g·L−1,外加电压15 V),F−去除率由单纯吸附法的67.02%提高到90.39%,达到了WHO饮用水水质标准,且无二次污染。SEM的表征结果表明,经过介电泳后,羟基磷灰石在电极上相互连接形成细长的线状结构。研究为减少高氟水中的氟离子提供了一种快速、高效的新方法。Abstract: The harm of high-fluorine water has attracted considerable attention. In order to reduce the high-content fluoride (F−) ion in drinking water, a new approach, based on dielectrophoresis (DEP), was developed in this study for F− removal from water. The DEP apparatus was designed to improve F− removal by combining dielectrophoresis with adsorption, and the effects of the types and dosage of adsorbent, and applied voltage on F− removal were discussed. The electrodes after dielectrophoresis was characterized by scanning electron microscopy (SEM). The experiment results showed that hydroxyapatite had the best perfromance for F− adsorption, and its saturated adsorption capacity was 5.88 mg·g−1. The thermodynamic behavior of F− adsorption on hydroxyapatite could be fitted by Langmuir adsorption isotherm equation which indicated that the adsorption belonged to the monolayer adsorption model. The F− removal efficiency was significantly improved from 67.02% by adsorption alone to 90.39% by adsorption-DEP under optimal conditions: the dosage of hydroxyapatite was 6 g·L−1, the applied voltage was 15 V, and the residual F− concentration met the drinking water quality standards of WHO without secondary pollution. SEM indicated that after dielectrophoresis, a slender linear structure occurred on the electrode due to the connection of hydroxyapatite particles. This study provides a new, rapid and efficient method for reducing fluoride ions from high-fluorine water.
-
Key words:
- dielectrophoresis enhancement /
- adsorption /
- fluoride ion /
- removal efficiency
-
表 1 羟基磷灰石对F−吸附等温方程参数
Table 1. Isotherm for F− adsorption by HAP
Langmuir吸附等温式 Freundlich吸附等温式 qmax/(mg·g−1) b/(L·mg−1) R2 Kf n R2 5.88 0.586 0.997 2.460 10 0.806 -
[1] 马福臻, 周少奇, 刘泽珺, 等. 三维网状 HZO@ SGH 对水中氟离子的吸附作用和机制[J]. 环境科学, 2018, 39(2): 828-837. [2] LIU F, MA J, ZHANG H, et al. Fluoride exposure during development affects both cognition and emotion in mice[J]. Physiology & Behavior, 2014, 124: 1-7. [3] MONIKA B, SHASHI A. Dose effect relationship between high fluoride intake and biomarkers of lipid metabolism in endemic fluorosis[J]. Biomedicine & Preventive Nutrition, 2013, 3(2): 121-127. [4] LIU H, GAO Y H, SUN L Y, et al. Assessment of relationship on excess fluoride intake from drinking water and carotid atherosclerosis development in adults in fluoride endemic areas, China[J]. International Journal of Hygiene and Environmental Health, 2014, 217(2): 413-420. [5] GANVIR V, DAS K. Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1287-1294. doi: 10.1016/j.jhazmat.2010.10.044 [6] 邬晓梅, 董长娟, 田金霞, 等. Mg-Fe-Ce复合金属氧化物对饮用水中氟离子的吸附特性研究[J]. 中国水利, 2016(1): 51-54. doi: 10.3969/j.issn.1000-1123.2016.01.017 [7] POHL H. The Behavior of Neutral Matter in Nonuniform Electric Fields[M]. UK: Cambridge University Press, 1978. [8] BATTON J, KADAKSHAM A J, NZIHOU A, et al. Trapping heavy metals by using calcium hydroxyapatite and dielectrophoresis[J]. Journal of Hazardous Materials, 2007, 139(3): 461-466. doi: 10.1016/j.jhazmat.2006.02.057 [9] 周金华, 龚錾, 李银妹. 光镊与介电泳微操纵技术[J]. 激光生物学报, 2007, 16(1): 119-127. doi: 10.3969/j.issn.1007-7146.2007.01.025 [10] 许静, 赵湛, 刘泳宏. 微全分析系统中的介电泳技术发展[J]. 仪表技术与传感器, 2009(S1): 330-338. [11] 张璐, 胡燕婷, 吴晶, 等. 利用皂土吸附和介电泳方法间接去除水中的Mn2+[J]. 环境科学学报, 2012, 32(6): 1394-1398. [12] FRENEA M, FAURE S P, LE PIOUFLE B, et al. Positioning living cells on a high-density electrode array by negative dielectrophoresis[J]. Materials Science and Engineering, 2003, 23(5): 597-603. doi: 10.1016/S0928-4931(03)00055-9 [13] ZHANG M L, ZHANG H Y, XU D, et al. Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method[J]. Desalination, 2011, 271(1/2/3): 111-121. [14] 郭亚丹, 邱丽丽, 倪悦然, 等. 高吸附、高稳定性纳米羟基磷灰石的制备及其吸附性能研究[J]. 东华理工大学学报(自然科学版), 2015, 38(4): 427-432. [15] 詹予忠, 李玲玲. 硅胶负载氧化锆除氟吸附剂的制备[J]. 化工时刊, 2006, 20(10): 12-14. doi: 10.3969/j.issn.1002-154X.2006.10.005 [16] 赵雅萍, 祁旭, 徐斌. 载La(Ⅲ)-和Fe(Ⅲ)-氨基膦酸型螯合树脂对氟吸附性能的比较[J]. 上海环境科学, 2004, 23(3): 96-99. [17] 苏馈足, 徐得潜, 李洋, 等. 铝土矿除氟吸附剂制备及其性能研究[J]. 工业用水与废水, 2008, 39(6): 78-81. doi: 10.3969/j.issn.1009-2455.2008.06.021 [18] 戴秋菊. 沸石用于饮用水氟含量控制的研究[J]. 天津化工, 2005, 19(1): 40-42. doi: 10.3969/j.issn.1008-1267.2005.01.015 [19] 邓昌亮, 徐海宁. 龙口褐煤对氟离子吸附的研究[J]. 化学研究与应用, 1999, 11(2): 199-202. [20] 王代芝, 杜冬云, 揭武. 改性膨润土处理含氟废水研究[J]. 非金属矿, 2003, 26(6): 42-43. doi: 10.3969/j.issn.1000-8098.2003.06.018 [21] 杜冬云, 王代芝, 赵小蓉, 等. 累托石对含氟废水中氟离子吸附作用的研究[J]. 非金属矿, 2003, 26(3): 37-38. doi: 10.3969/j.issn.1000-8098.2003.03.017 [22] 张莉平, 习晋. 特殊水质处理技术[M]. 北京: 化学工业出版社, 2006. [23] HU J, CHEN H Y, LAN B H, et al. A dielectrophoresis-assisted adsorption approach significantly facilitates the removal of cadmium species from wastewater[J]. Environmental Science: Water Research & Technology, 2015, 1(2): 199-203. [24] LIU D Y, CUI C Y, WU Y H, et al. Highly efficient removal of ammonia nitrogen from wastewater by dielectrophoresis-enhanced adsorption[J]. PeerJ, 2018, 6: e5001. doi: 10.7717/peerj.5001 [25] 陈慧英, 张鹤腾, 于乐. 利用空心微球和介电泳去除水中Pb2+[J]. 环境科学学报, 2010, 30(4): 756-761. [26] 陈慧英, 黄华倩, 朱岳麟, 等. 影响加氢柴油介电精制效率的因素[J]. 石油炼制与化工, 2009(7): 51-54. doi: 10.3969/j.issn.1005-2399.2009.07.013 [27] 胡婧. 吸附-介电泳法去除水中氨氮的工艺及机理研究[D]. 北京: 中央民族大学, 2015. [28] KIM W B, PARK S J, MIN B K, et al. Surface finishing technique for small parts using dielectrophoretic effects of abrasive particles[J]. Journal of Materials Processing Technology, 2004, 147(3): 377-384. doi: 10.1016/j.jmatprotec.2004.01.010 [29] 蓝碧浩. 吸附-介电泳法去除水中重金属工艺及机理研究[D]. 北京: 中央民族大学, 2014.