-
含油污水来源非常广泛,在油气开采、油气储运、石油化工、煤化工制油、机械制造等行业都会大量产生[1]。含油污水中的污染物主要包括油类、硫化物、悬浮物等,若不进行有效处理而任意排放,容易造成环境污染,特别是土壤、河流或地下水污染[2]。常用的含油污水单元处理技术主要有重力分离、离心分离、气浮、过滤、生化、化学法等[3]。气浮技术是利用高浓度的微细气泡(粒径一般控制在10~300 μm)作为载体黏附于含油污水中的油滴等分散相颗粒表面,大幅度降低污染物的表观密度,加速实现其运移分离过程[4]。气浮法因具有选择性黏附效率高、泥渣产量少、操作维护费用低等优势,已在含油污水处理领域得到了极为广泛的应用[5]。
随着环保意识的逐渐加强以及环保法规的不断完善,气浮技术逐渐向高效化、紧凑化和密闭化方向发展,气浮分离区内主体流态已经由层流流态逐渐发展为湍流流态甚至是层流-湍流(包含旋流)多流态耦合方向发展[6]。气旋浮技术或称紧凑型气浮技术(compact flotation unit, CFU)是一种耦合旋流分离与气浮分离技术的新技术,具有分离效率较高、结构紧凑(水力停留时间可控制在1~3 min左右)等优势,近10年得到了非常广泛的关注。以EPCON CFU(已被美国斯伦贝谢公司收购)为代表的气旋浮装置已经在Brage、Troll C等几十个油田现场得到了成功应用[7-8]。但现有气旋浮装置在运行过程中普遍存在旋流强度衰减程度过大和微气泡利用不充分等不足,在一定程度上制约了其分离性能的提升,以至于油田现场一般须采用两级甚至多级气旋浮罐串联运行模式,才能够满足对分离效率和稳定性的要求。为进一步提升单体气旋浮罐的分离性能,原挪威TST公司(已被美国斯伦贝谢公司收购)率先推出了立式单罐多级设计方案的TST CFU,以期通过在单个气旋浮罐内设置多级气旋浮分离腔室的方法实现强化旋流强化和提高油水分离效率的目的[9]。但遗憾的是,在单气旋浮罐要实现处理水收集及再分布过程,其内部结构非常复杂,加工成本较高,且现场测试结果显示分离效率不甚理想[10-13]。美国斯伦贝谢公司在EPCON CFU的基础上研发了基于二次旋流强化技术的第二代气旋浮装置Dual CFU[14]。该气旋浮装置通过在罐体内部中下区域设置二次旋流强化用导流片,有效强化了气旋浮罐内处理水的旋流分离过程,与EPCON CFU相比,在紧凑性和分离效率等方面得到了大幅度提升。由于其卓越的分离性能,该技术于2015年11月荣获“国际石油工程技术创新特别贡献奖-水管理奖”。虽然现场结果已经表明二次旋流强化技术有助于提升气旋浮罐单体分离性能,但迄今尚未见到结合二次强化旋流技术进行气旋浮流场分布特性及分离特性研究相关文献,故无法为气旋浮的性能提升以及工程化应用提供基础性数据支撑。
本研究基于自主设计研发的气旋浮装置,利用CFD数值模拟方法对气旋浮装置的二次旋流强化用导流叶片等关键结构进行了参数优选,并对基于二次旋流强化气旋浮罐的速度场、旋流场等流场分布特性进行研究,讨论分析了二次旋流强化作用对气旋浮内油水运移分离过程的影响规律,为进一步推动气旋浮装置性能优化和结构创新,丰富完善该技术设计理论体系,加速推进其工业化应用进程提供参考。
二次旋流强化型气旋浮技术的分离特性
Separation performance of secondary swirling enhanced compact flotation unit technology
-
摘要: 现有气旋浮装置在运行过程中普遍存在旋流强度衰减程度过大等问题,限制了其分离性能的提升,基于此,分析了二次旋流强化作用对气旋浮罐内旋流强度和分离性能的影响特性;借助CFD数值模拟方法和响应曲面法等手段对基于二次旋流强化气旋浮罐主要结构的参数进行了优化,对比分析了常规气旋浮罐和二次旋流强化气旋浮罐的内部流场和油水分离特性。结果表明,采用二次旋流强化结构可以有效提高旋流强度,加速“油滴-微气泡黏附体”向旋流中心汇聚,优化后的气旋浮罐油水分离效率提高至94.5%,较常规单级气旋浮罐提高了10%;二次旋流强化结构是提升气旋浮分离过程中旋流强度和提高气旋浮装置分离性能的有效途径。以上结果可进一步推动气旋浮装置性能的优化和结构创新,可丰富完善该技术设计的理论体系。Abstract: There are many problems in the operation of the existing compact flotation unit, such as excessive attenuation of swirl intensity, which limits the improvement of its separation performance. In this study, the effect of secondary swirl strengthening on the swirl intensity and separation performance of compact flotation unit was analyzed. Based on the CFD numerical simulation method and the response surface method, the main structural parameters such as the axial length, the inclination angle, the inner diameter of the guide vane and the height of primary separation zone in the secondary swirling enhanced compact flotation unit were optimized. The flow field distribution characteristics and oil-water separation characteristics in the conventional compact flotation unit and the secondary swirling enhanced compact flotation unit were compared and analyzed. The results showed that the use of guide vanes for secondary swirling enhancement can effectively improve the swirl intensity of treated water during the separation process, promote the collision and adhesion probability of the oil droplets and the fine bubbles, and accelerate the migration process of oil droplet-micro bubble aggregates to the swirl center. The separation efficiency of the secondary enhanced swirling compact flotation unit device increased up to 94.5%, that was 10% higher than that of conventional compact flotation unit. The use of guide vanes for secondary swirling enhancement is an effective way to improve the swirl intensity during the compact flotation separation process and the separation performance of compact flotation unit.
-
表 1 因素代号及相应水平
Table 1. Factor code and corresponding level
因素及代号 水平 −1 0 1 (A) 导流叶片内径/mm 220 230 240 (B) 一级分离区高度/mm 300 350 400 (C) 导流叶片轴向长度/mm 40 50 60 (D) 导流叶片倾斜角/(°) 50 60 70 -
[1] GOLESTANBAGH M, PARVINI M, PENDASHTEH A. Integrated system for oilfield produced water treatment: The state of the art[J]. Energy Sources, 2016, 38(22): 3404-3411. doi: 10.1080/15567036.2016.1154903 [2] RUBIO J, SOUZA M L, SMITH R W. Overview of flotation as a wastewater treatment technique[J]. Minerals Engineering, 2002, 15(3): 139-155. doi: 10.1016/S0892-6875(01)00216-3 [3] ATLE M Y. Apparatus method for separation of phases in a multiphase flow: 2010264088A1[P]. 2010-10-21. [4] 李小兵. 基于微泡浮选的多流态强化油水分离研究[D]. 北京: 中国矿业大学, 2011. [5] RALSTON J, FORNASIERO D, HAYES R. Bubble-particle attachment and detachment in flotation[J]. International Journal of Mineral Processing, 1999, 56(1): 133-164. [6] 王波, 陈家庆, 翟战膑. Epcon紧凑型气浮装置及其在采油污水处理中的应用[J]. 北京石油化工学院学报, 2007, 15(3): 47-51. doi: 10.3969/j.issn.1008-2565.2007.03.012 [7] 王波, 陈家庆, 梁存珍, 等. 含油废水气旋浮组合处理技术浅析[J]. 工业水处理, 2008, 28(4): 87-92. doi: 10.3969/j.issn.1005-829X.2008.04.027 [8] 蔡小垒, 王春升, 陈家庆, 等. BIPTCFU-Ⅲ型旋流气浮一体化采出水处理样机及其在秦皇岛32-6油田的试验分析[J]. 中国海上油气, 2014, 26(6): 80-85. [9] 陈家庆, 蔡小垒, 尚超, 等. 旋流气浮一体化技术在低含油污水处理中的应用[J]. 石油机械, 2013, 41(9): 62-66. doi: 10.3969/j.issn.1001-4578.2013.09.016 [10] 陈涛涛, 邵天泽, 陈家庆, 等. 紧凑型旋流气浮一体化技术的国产化研究进展与主体结构浅析[J]. 北京石油化工学院学报, 2014, 22(2): 59-66. doi: 10.3969/j.issn.1008-2565.2014.02.012 [11] 莫同鸿, 段文益, 伍远平, 等. 气旋浮高效油水分离器试验研究[J]. 石油机械, 2010, 38(12): 5-8. [12] ARVOH K B, ASDAHL S, RABE K. Online estimation of reject gas flow rates in compact flotation units for produced water treatment: A feasibility study[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 114: 87-98. doi: 10.1016/j.chemolab.2012.03.008 [13] ARVOH K B, ASDAHL S, RABE K. Online estimation of reject gas and liquid flow rates in compact flotation units for produced water treatment[J]. Flow Measurement and Instrumentation, 2012, 24: 63-70. doi: 10.1016/j.flowmeasinst.2012.03.008 [14] MAELUM M, RABE K. Improving oil separation from produced water using new compact flotation unit design[C]//Society of Petroleum Engineers. Presentation at the SPE Production and Operations Symposium Held in Oklahoma City, USA, 1-5 March, 2015: 173589. [15] LINGA H. Produced water pre-conditioning: A solution for optimized water treatment[J]. Produced Water Management, 2011, 7: 19-20. [16] 孔祥功, 陈家庆, 姬宜朋, 等. 大处理量紧凑型气浮装置的数值模拟[J]. 化工进展, 2016, 35(3): 733-740. [17] 俞接成, 陈家庆, 王春升, 等. 紧凑型气浮装置油水预分离区结构选型的数值研究[J]. 过程工程学报, 2012, 12(5): 742-747. [18] 韩严和, 陈家庆, 阮修莉, 等. 旋流气浮工艺接触区气泡-颗粒碰撞理论研究[J]. 中国环境科学, 2013, 33(5): 827-831. doi: 10.3969/j.issn.1000-6923.2013.05.009 [19] EFTEHARDADKHAH M, AANESEN S V, RABE K, et al. Oil removal from produced water during laboratory- and pilot-scale gas flotation: The influence of interfacial adsorption and induction times[J]. Energy & Fuels, 2015, 29(11): 7734-7740. [20] 蒋明虎, 谭放, 金淑芹, 等. 基于Fluent网格变形的旋流器的形状优化[J]. 化工进展, 2016, 35(8): 2355-2361. [21] KHAROUA N, KHEZZAR L, SAADAWI H. CFD modelling of a horizontal three-phase separator: A population balance approach[J]. American Journal of Fluid Dynamics, 2013, 3(4): 101-118. [22] BASAVARAJAPPA M, MISKOVIC S. Gas dispersion characteristics in lab-scale flotation cell using coupled CFD-PBM quadrature based moment method[C]//Minerals Engineering International. Presentation at the MEI Computational Modelling Conference Held in Cornwall, UK, 2015: 2-3. [23] 安杉. 立式两级气旋浮设备开发及相关问题研究[D]. 北京: 北京化工大学, 2017. [24] 蒋明虎, 刘道友, 赵立新, 等. 锥角对水力旋流器压力场和速度场的影响[J]. 化工机械, 2011, 38(5): 572-746. doi: 10.3969/j.issn.0254-6094.2011.05.017 [25] 蔡小垒. 气浮旋流一体化水处理技术理论及工程应用研究[D]. 北京: 北京化工大学, 2017. [26] 范大为. 气-液分离水力旋流器理论与试验研究[D]. 大庆: 大庆石油学院, 2009.