-
地下水是我国饮用水的重要来源,我国《生活饮用水卫生标准》(GB 5749-2006)中规定氟离子浓度不超过1.0 mg·L−1;当饮用水中氟离子浓度超标时,会引起骨质疏松、斑釉症,甚至出现氟中毒现象[1-3]。我国高含氟地下水分别广泛,影响人口众多,随着我国工业的发展,地下水遭到不同程度的污染,地下水本底氟浓度超标区与区域污染物浓度叠加进一步推高地下水氟污染物范围和浓度限值,如内蒙古河套地区和山东高密地区,地下水含氟量为2~9 mg·L−1,部分地区的含氟量超过10 mg·L−1[4-5],而高含氟地下水势必对人群健康造成严重影响。因此,开展高含氟地下水除氟技术研究显得尤为重要。
电絮凝除氟作为一种深度除氟工艺,因其除氟效率高、占地面积小、产泥量少、成本低而被国内外学者关注。目前,关于电絮凝除氟的研究包括极板材质、影响因素、组合工艺处理及作用机理等[6-14]。邵坚等[8]通过在双铝电絮凝中引入锌电极以构建锌铝电絮凝体系并用于饮用水处理,通过控制锌铝比为1∶3,出水氟离子浓度为0.82 mg·L−1,除氟效率高达85.2%,且系统对CODMn和浊度去除效果要优于双铝电极。ESSADKI等[9]发现除氟过程符合一级吸附动力学模型,并发现吸附动力学常数与电流密度、初始氟浓度、pH及反应器水力条件有关,当电流密度由2.86 mA·cm−2增至17.1 mA·cm−2时,动力学常数由0.052 min−1增长至0.117 min−1。电絮凝体系中离子种类同样影响除氟效果,有研究[10-11]表明,在电絮凝体系中适当引入Ca2+、Mg2+有助于除氟效率的提高,但两者作用机理有所不同,通过回归分析发现Mg2+可以与铝、氟形成化合物而改变铝氟比,而Ca2+不参与化合物形成。为实现电絮凝体系产生的含氟沉淀絮体与水的快速分离,有研究[12-13]尝试通过电絮凝与微滤、超滤系统结合,结果表明,电絮凝与膜分离技术的结合不仅提高了电絮凝除氟效率,而且显著减小了装置占地,但由此也会引发连续运行中的膜污染问题,通过控制装置运行方式,调节运行参数如pH,可以减缓膜污染,实现系统长周期稳定运行[14]。目前,关于电絮凝除氟研究对象多集中于饮用水和地下水,但初始氟浓度一般低于5 mg·L−1,并且关于电絮凝除氟动力学研究相对较少。
针对高含氟地下水,探讨电絮凝除氟影响因素及除氟动力学,不仅可以优化除氟效率,而且为该类废水工程化提供技术参考。本研究采用双铝电极电絮凝装置处理人工模拟高含氟地下水,对电絮凝除氟效率影响因素,包括电流密度、pH、极板间距及进水氟浓度进行了考察,对电絮凝除氟过程和除氟动力学进行了研究,并对电絮凝除氟动力学影响因素进行了探讨,为电絮凝深度处理高含氟地下水应用和除氟反应器开发提供技术依据。
双铝电极电絮凝处理高含氟地下水的影响因素及动力学分析
Influencing factors and kinetics analysis of electrocoagulation with bipolar aluminum electrodes treating high fluorine groundwater
-
摘要: 为探求电絮凝处理高含氟地下水工艺技术参数及其除氟动力学,采用双铝电极电絮凝装置处理人工模拟高含氟地下水,研究了双铝电絮凝除氟过程及其除氟动力学模型,分别考察了电流密度、pH、极板间距及初始氟浓度对电絮凝除氟过程影响。结果表明,电絮凝除氟过程符合一级反应动力学模型,理论所需除氟时间取决于初始氟浓度和除氟动力学常数,而除氟动力学常数受电流密度、极板间距和初始氟浓度影响;当电流密度为300 A·m−3,pH为6.0~7.0,极间距为10 mm时,双铝电絮凝除氟能效最高,氟离子去除率为89.56%,能耗为0.157 8 kWh·g−1;但较高的初始氟浓度容易使铝氟比下降,导致除氟效果下降,不利于除氟过程。以上结果可为电絮凝处理高含氟地下水工程化应用和除氟反应器开发提供参考。Abstract: Aiming to determine the process parameters for electrocoagulation treating high fluorine groundwater and its de-fluorine kinetics, the electrocoagulation with bipolar aluminum electrodes was used to treat high fluorine groundwater and study its de-fluorine process and kinetic model. The effects of current density, pH, electrode distance and initial fluorine concentration on the de-fluorine process by electrocoagulation were also investigated, respectively. The results showed that the electrocoagulation de-fluorine process followed the first-order kinetics model. The theoretical time of de-fluorine depended on the initial fluorine concentration and the kinetic constant, while the kinetic constant of de-fluorine was affected by current density, electrode distance and initial fluorine concentration. The highest fluorine removal efficiency by electrocoagulation with bipolar aluminum electrodes reached 89.56% with energy consumption of 0.157 8 kWh·g−1 when the operational parameters of current density, pH and electrode distance maintained at 300 A·m−3, 6.0~7.0 and 10 mm, respectively. However, the aluminum-fluorine ratio decreased with the increase of the initial fluorine concentration, resulting in a decrease in the fluorine removal efficiency, which was not conducive to de-fluorine by electrocoagulation. This research provides a theoretical basis for the practical application of electrocoagulation treating high fluorine groundwater and the development of de-fluorine reactor.
-
表 1 不同初始氟浓度下絮体元素分析
Table 1. Elementary composition of flocs under different initial fluoride concentration
初始氟浓度/
(mg·L−1)质量分数/% 含氟絮体对应的化学结构 F Na Mg Al K Ca S Cl O 合计 8.2 0.75 5.64 1.08 25.6 0.635 1.97 4.18 12.0 47.9 99.76 FAl24.3O76.7H58.4Na6.3K0.4Ca1.3Mg1.2Cl8.7S3.4 10.2 1.38 5.15 0.98 25.0 0.690 2.06 4.32 11.8 48.0 99.38 FAl12.7O41.1H32.7Na3.1K0.2Ca0.7Mg0.6Cl4.5S1.8 14.3 2.04 4.54 0.91 25.0 0.647 2.14 4.65 12.9 46.5 99.32 FAl8.7O27.2H21.0Na1.8K0.2Ca0.5Mg0.4Cl3.4S1.4 -
[1] PRENTICE A. Diet, nutrition and the prevention of osteoporosis[J]. Public Health Nutrition, 2004, 7(1A): 227-243. doi: 10.1079/PHN2003590 [2] JAGTAP S, YENKIE M K, LABHSETWAR N, et al. Fluoride in drinking water and defluoridation of water[J]. Chemical Reviews, 2012, 112(4): 2454-2466. doi: 10.1021/cr2002855 [3] MOHAPATRA M, ANAND S, MISHRA B K, et al. Review of fluoride removal from drinking water[J]. Journal of Environmental Management, 2009, 91(1): 67-77. doi: 10.1016/j.jenvman.2009.08.015 [4] 毛若愚, 郭华明, 贾永峰, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2): 260-268. [5] 李彩霞. 山东省高密地区高氟地下水的成因浅析[J]. 山东国土资源, 2007, 23(8): 8-11. doi: 10.3969/j.issn.1672-6979.2007.08.003 [6] EMAMJOMEH M M, SIVAKUMAR M. An empirical model for defluoridation by batch monopolar electrocagulation/flotation (ECF) process[J]. Journal of Hazardous Materials, 2006, 131: 118-125. doi: 10.1016/j.jhazmat.2005.09.030 [7] 张道勇, 潘响亮, 穆桂金, 等. 双极铝电极电絮凝法去除地下水中氟的实验研究[J]. 水处理技术, 2008, 34(5): 46-49. [8] 邵坚, 陆建红, 邹仲勋, 等. 锌铝电极电絮凝法处理高氟饮用水的研究[J]. 中国给水排水, 2009, 25(15): 100-102. doi: 10.3321/j.issn:1000-4602.2009.15.029 [9] ESSADKI A H, GOURICH B, AZZI M, et al. Kinetic study of defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor and in an external-loop airlift reactor[J]. Chemical Engineering Journal, 2010, 164(1): 106-114. doi: 10.1016/j.cej.2010.08.037 [10] GOVINDAN K, RAJA M, UMA MAHESHWARI S, et al. Comparison and understanding of fluoride removal mechanism in Ca2+, Mg2+ and Al3+ ion assisted electrocoagulation process using Fe and Al electrodes[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1784-1793. doi: 10.1016/j.jece.2015.06.014 [11] ZHAO H, ZHAO B, YANG W, et al. Effects of Ca2+ and Mg2+ on defluoridation in the electrocoagulation process[J]. Environmental Science & Technology, 2010, 44(23): 9112-9116. [12] 李静波, 赵璇, 李福志. 电絮凝-微滤去除饮用水中的氟[J]. 清华大学学报(自然科学版), 2007, 47(9): 1495-1497. doi: 10.3321/j.issn:1000-0054.2007.09.025 [13] 王树青, 胡承志, 杨春风, 等. 电絮凝-超滤除氟工艺参数优化研究[J]. 环境工程学报, 2015, 9(7): 3093-3098. doi: 10.12030/j.cjee.20150704 [14] 梁言, 杨小明, 孙境求, 等. 电絮凝-超滤除氟控铝工艺参数优化[J]. 环境工程学报, 2018, 12(11): 3020-3027. doi: 10.12030/j.cjee.201805096 [15] HU C Y, LO S L, KUAN W H. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes[J]. Water Research, 2003, 37(18): 4513-4523. doi: 10.1016/S0043-1354(03)00378-6 [16] 卢建杭, 刘维屏, 郑巍, 等. 铝盐混凝去除氟离子的作用机理探讨[J]. 环境科学学报, 2000, 20(6): 709-713. doi: 10.3321/j.issn:0253-2468.2000.06.009 [17] PITTER P. Forms of occurrence of fluorine in drinking water[J]. Water Research, 1985, 19(3): 281-284. doi: 10.1016/0043-1354(85)90086-7 [18] THAKUR L S, MONDAL P. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation[J]. Journal of Environmental Management, 2017, 190: 102-112.