-
污水的脱氮过程主要由微生物完成,温度与有机碳浓度是影响微生物处理效率的主要因素。微生物生长的最佳水温是20~35 ℃,当水温在此范围之外时,反硝化细菌的增殖代谢速率将降低,致使反硝化速率也降低[1]。此外,菌体生长过程中需要有机物作为碳源提供其生长和反硝化过程所必需的能源,当碳源不足时,不能为反硝化提供充足的能量,反应进行不彻底且造成中间产物亚硝酸盐的积累[2]。近年来,我国污水厂进水COD/N为3~5,有机物浓度偏低,导致传统的反硝化工艺脱氮不彻底[3-5]。铁碳微电解技术由于其对碳源的需求小、处理效果好、成本低廉以及操作维护方便等优点被国内外学者广泛关注[6]。自养反硝化菌可利用铁碳微电解颗粒通过原电池反应生成的Fe2+和[H]为电子供体进行自养反硝化反应[7-8],但是对于COD/N<3~5的污水,若单独使用铁碳微电解技术会在处理中出现亚硝态氮积累的现象[9]。为提高生化工艺的脱氮效果,大多数污水厂采用外加碳源的方式。投加固体碳源一方面可作为微生物的载体,另一方面可补充异养反硝化所需的碳源,从而获得较高的脱氮除磷效率[10]。近年来,自养反硝化与异养反硝化的结合成为一种新的发展趋势。有研究[11]发现,自养反硝化和异养反硝化在同一体系内可以协同完成完全反硝化过程。为提高对低COD/N污水的脱氮除磷效果,本研究采用铁碳微电解耦合固相反硝化强化生物脱氮除磷系统,通过在系统内投加铁碳微电解填料以及固体碳源颗粒,实现了自养/异养反硝化耦合脱氮,使得氮、磷被有效地去除。对此,分别考察了HRT、DO、pH对耦合系统脱氮除磷性能的影响,对门、纲、属3个水平上的微生物群落结构进行了多样性分析,从微生物生态学角度解析铁碳微电解-自养/异养反硝化除磷协同机制。
微电解耦合固相反硝化脱氮除磷效果及微生物分析
Nitrogen and phosphorus removal performance of microelectrolysis coupled with solid denitrification and its microbial community analysis
-
摘要: 为提高低碳氮比污水中氮、磷的去除率,通过铁碳微电解耦合固相反硝化系统强化生物脱氮除磷的效果,分别考察了HRT、DO、pH对耦合系统中氮、磷去除效果的影响,并对铁碳颗粒(FC)、固体碳源颗粒(CC)和悬浮污泥(SS)的微生物群落结构进行了分析。结果表明:当进水C/N=1.5时,耦合系统的最佳运行参数为HRT=4 h、DO=2.0 mg·L−1、pH=7.0;此时
${{\rm{NH}}_4^ + }$ -N、${{\rm{NO}}_3^ - }$ -N、TN、TP的去除率分别为95.63%、93.48%、94.72%、99.10%。高通量测序分析结果表明:在门水平上,3个样本(FC、CC、SS)中的优势菌门为Proteobacteria、Actinobacteria和Bacteroidetes,其中具有反硝化脱氮功能的Proteobacteria在FC、CC、SS中分别占样本总数的72.66%、67.43%、68.66%;在纲水平上,SS中Alphaproteobacteria的相对丰度显著高于FC和CC,FC中的Gammaproteobacteria的相对丰度显著高于CC和SS,CC中的Gemmatimonadetes相对丰度明显高于FC和SS,生物除磷主要发生在CC中;在属水平上,Gemmobacter在FC、CC、SS中的相对丰度分别为25.50%、23.64%、32.53%,对异养反硝化过程起到重要作用。以上结果有助于提高对微电解-自养/异养反硝化除磷耦合系统中微生物生态学的理解。Abstract: In order to improve the removal efficiency of nitrogen and phosphorus in sewage with low carbon-nitrogen ratio, the effects of HRT, DO and pH on nitrogen and phosphorus removal were investigated in a coupled system of iron-carbon microelectrolysis and solid denitrification. The microbial community structure in the iron carbon particles (FC), solid carbon source particles (CC) and suspended sludge (SS) were analyzed. The results showed that when the influent C/N ratio was 1.5, the optimal operating parameters of the coupling system were HRT=4 h, DO=2.0 mg·L−1, pH=7.0, and the removal rates of${\rm{NH}}_4^ + $ -N,${\rm{NO}}_3^ - $ -N, TN, TP were 95.63%, 93.48%, 94.72% and 99.10%, respectively. High-throughput sequencing analysis demonstrated that at the phylum level, the dominant bacteria in the three samples (FC, CC, SS) were Proteobacteria, Actinobacteria and Bacteroidetes, respectively. Proteobacteria with denitrifying and denitrifying functions in FC, CC, SS were accounted for 72.66%, 67.43% and 68.66% of the total sample, respectively. At the class level, the relative abundance of Alphaproteobacteria in SS was significantly higher than that in FC and CC, while Gammaproteobacteria in FC was significantly higher than that in CC and SS. Especially, the relative abundance of Gemmatimonadetes in CC was significantly higher than that of FC and SS, indicating that biological of phosphorus removal mainly occurred in CC. At the genus level, the relative abundances of Gemmobacter in FC, CC and SS were 25.50%, 23.64% and 32.53%, respectively, which played an important role in denitrification. This study would be helpful to improve the understanding of microbial ecology in the coupled system of microelectrolysis-autotrophic/autotrophic denitrifying and phosphorus removal. -
表 1 门水平上各样本主要种群相对丰度
Table 1. Relative abundance of main population of each sample at the phylum level
% 微生物种群 FC样本 CC样本 SS样本 Proteobacteria 72.66 67.43 68.66 Actinobacteria 15.86 11.47 14.06 Bacteroidetes 7.76 13.82 13.86 Gemmatimonadetes 1.50 4.61 1.89 Planctomycetes 1.49 1.56 0.85 Verrucomicrobia 0.34 0.62 0.38 Acidobacteria 0.15 0.14 0.10 Firmicutes 0.06 0.05 0.08 表 2 纲水平上各样本主要种群相对丰度
Table 2. Relative abundance of main population of each sample at the class level
% 微生物种群 FC样本 CC样本 SS样本 Alphaproteobacteria 36.73 37.21 46.18 Gammaproteobacteria 31.29 22.48 16.20 Actinobacteria 15.86 11.47 14.06 Sphingobacteriia 6.47 11.12 11.39 Betaproteobacteria 4.60 7.71 6.25 Gemmatimonadetes 1.50 4.61 1.89 Cytophagia 1.12 2.20 1.93 Planctomycetia 1.47 1.54 0.85 表 3 属水平上各样本主要种群相对丰度
Table 3. Relative abundance of main population of each sample at the genus level
% 微生物种群 FC样本 CC样本 SS样本 Gemmobacter 25.50 23.64 32.53 Actinotalea 14.61 10.57 13.44 Arenimonas 6.09 6.10 5.75 Defluviimonas 4.81 5.12 5.59 Lacibacter 3.42 5.50 5.26 Lysobacter 3.72 4.55 3.31 Flavihumibacter 2.04 3.19 3.82 Gemmatimonas 1.50 4.61 1.89 Novosphingobium 1.59 2.55 2.66 Thauera 0.74 1.87 2.03 Dechloromonas 0.91 1.31 0.70 表 4 多样性指数统计表
Table 4. Statistical table of diversity index
样本 序列数目 OTU数目 Shannon指数 ACE指数 Chao1指数 Simpson指数 覆盖率 CC 42 598 1 947 3.570 525 47 908.07 19 030.69 0.09 0.96 FC 34 926 1 544 3.096 69 47 852.3 15 750.33 0.13 0.96 SS 39 861 1 700 3.204 402 47 106.85 16 971.12 0.14 0.96 -
[1] 毛福荣, 张超, 刘石虎, 等. 基于好氧反硝化及反硝化聚磷菌强化的低温低碳氮比生活污水生物处理中试研究[J]. 中国给水排水, 2019, 35(15): 19-24. [2] 张树松, 樊月婷, 孙兴, 等. 菌株Diaphorobacter polyhydroxybutyrativorans SL-205的反硝化特性[J]. 中国环境科学, 2017, 37(9): 3532-3539. doi: 10.3969/j.issn.1000-6923.2017.09.041 [3] 郑晓英, 乔露露, 王慰, 等. 碳源对反硝化生物滤池运行及微生物种群的影响[J]. 环境工程学报, 2018, 12(5): 1434-1442. doi: 10.12030/j.cjee.201710046 [4] 孙迎雪, 胡银翠, 孙云祥, 等. 反硝化生物滤池深度脱氮机理[J]. 环境工程学报, 2012, 6(6): 1857-1862. [5] 丁怡, 宋新山, 严登华, 等. 补充碳源提取液对人工湿地脱氮作用的影响[J]. 环境科学学报, 2012, 32(7): 1646-1652. [6] 刘洋, 高健磊, 周子鹏. 铁碳微电解-ABR-改良CASS工艺处理制药废水[J]. 工业水处理, 2019, 39(5): 92-94. doi: 10.11894/iwt.2018-0468 [7] 尚亚丹, 李政伟, 海热提, 等. 间歇曝气铁碳微电解耦合人工湿地脱氮除磷研究[J]. 水处理技术, 2018, 44(10): 99-102. [8] 王田野, 魏荷芬, 胡子全, 等. 一株异养硝化好氧反硝化菌的筛选鉴定及其脱氮特性[J]. 环境科学学报, 2017, 37(3): 945-952. [9] 王昌稳, 雷泽远, 李军, 等. 铁碳微电解预处理高盐腌制废水的运行方式研究[J]. 中国给水排水, 2018, 34(15): 95-99. [10] 钱胜强, 杨扬, 等. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报, 2014, 8(5): 1817-1824. [11] 翟思媛, 赵迎新, 季民. 自养-异养反硝化协同作用强化污水深度脱氮研究进展[J]. 水处理技术, 2018, 44(6): 1-5. [12] WANG Y Y, CHEN J, ZHOU S, et al. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress[J]. Chemical Engineering Journal, 2017, 317: 512-521. doi: 10.1016/j.cej.2017.02.096 [13] 朱文优. 大曲中赭曲霉毒素A及其产生微生物的分布特征研究[D]. 无锡: 江南大学, 2017. [14] 何毅, 朱静平. 铁碳微电解系统对废水中TP去除的效果及影响因素[J]. 西南科技大学学报, 2019, 34(1): 39-44. doi: 10.3969/j.issn.1671-8755.2019.01.007 [15] 颜勇, 张佳男, 林涛, 等. 铁碳微电解/BAF预处理农村微污染原水[J]. 中国给水排水, 2018, 34(23): 50-53. [16] WAMKAM C T, OPOKU M K, HONG H P. Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles[J]. Journal of Applied Physics, 2011, 109(1): 15-24. [17] 贾雪雷, 朱崇梅, 张婉, 等. 微电解法去除生活污水中磷的试验研究[J]. 水处理技术, 2013, 39(10): 31-34. doi: 10.3969/j.issn.1000-3770.2013.10.007 [18] 蒋志云, 韦佳敏, 缪新年, 等. ABR-MBR工艺反硝化除磷微生物群落特征分析[J]. 环境工程学报, 2019, 13(7): 1-9. [19] MAO Y P, XIA Y, ZHANG T. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing[J]. Bioresource Technology, 2013, 128(1): 703-710. [20] ZHU I, GETTING T. A review of nitrate reduction using inorganic materials[J]. Environmental Technology Reviews, 2012, 1(1): 46-58. doi: 10.1080/09593330.2012.706646 [21] 朱砺之, 黄娟, 傅大放, 等. 人工湿地生态系统中的微生物作用及PCR-DGGE技术的应用[J]. 安全与环境工程, 2012, 19(2): 26-30. doi: 10.3969/j.issn.1671-1556.2012.02.007 [22] 刘亚利, 袁一星, 李欣, 等. 污泥发酵液对A2O脱氮除磷和微生物的影响[J]. 哈尔滨工业大学学报, 2014, 46(10): 42-46. doi: 10.11918/j.issn.0367-6234.2014.10.007 [23] FENG C, ZHANG Z, WANG S, et al. Characterization of microbial community structure in a hybrid biofilm-activated sludge reactor for simultaneous nitrogen and phosphorus removal[J]. Journal of Environmental Biology, 2013, 34(2SI): 489-499. [24] SHEN Z Q, ZHOU Y X, HU J, et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support[J]. Journal of Hazardous Materials, 2013, 250: 431-438. [25] 王思宇, 李军, 秀杰, 等. 添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学, 2017, 37(12): 4649-4656. doi: 10.3969/j.issn.1000-6923.2017.12.030 [26] XING W, LI J L, CONG Y, et al. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing[J]. Bioresourec Technology, 2017, 229: 134-142. doi: 10.1016/j.biortech.2017.01.010 [27] 黄菲, 梅晓洁, 王志伟, 等. 冬季低温下MBR与CAS工艺运行及微生物群落特征[J]. 环境科学, 2014, 35(3): 1002-1008. [28] ZHANG Y, XIE X, JIAO N, et al. Diversity and distribution of amoA-type nitrifying and nirS-type denitrifying microbial communities in the Yangtaze River estuary[J]. Biogeosciences Discussions, 2014, 11(8): 2131-2145. doi: 10.5194/bg-11-2131-2014