-
氮氧化物(NOx)会造成地面臭氧、酸雨、富营养化等一系列环境问题,也可对人体造成直接危害。传统的NH3选择性催化还原NO(NH3-SCR)技术广泛应用于固定源脱硝,但其存在氨腐蚀、泄漏等诸多问题,易对环境造成二次污染。烃类选择性催化还原NO(HC-SCR)是一种新型烟气脱硝技术,其优点在于烃类化合物HC既是尾气中的燃烧产物,又可作为消除NO的还原剂,可实现2种污染物的同时消除,故具有较好的研究价值和应用潜力。近年来,以黏土材料为原料,通过金属氧化物在黏土层间形成“支柱”从而制备的柱撑黏土(pillared clay, PILC)类催化剂受到了研究人员的广泛关注。柱撑黏土材料是一种由金属阳离子通过离子交换取代黏土原料的层间阳离子从而得到的一种微孔材料。经高温焙烧后,层间金属阳离子转化为具有体相氧化物结构的金属氧化物纳米颗粒,这些颗粒固定在黏土的层间(也就是所谓“柱”),使黏土层间形成微观孔道。柱撑黏土具有孔隙结构,其比表面积大且水热稳定性强,是一种优良的催化剂载体[1-2]。国内外研究者针对金属修饰柱撑黏土类催化剂进行了大量的研究,发现该类催化剂具有较好的HC-SCR催化性能,研究结果如表1所示。通过比较可以发现,课题组前期制备并研究的铁修饰铝柱撑黏土(Fe/Al-PILC)催化剂表面的NO转化率高且反应温度低[11],说明Fe/Al-PILC具有很好的C3H6-SCR催化活性,值得进一步深入研究。
蒙脱土[(MxnH2O)(Al2-xMgx)(Si4O10)(OH)2]为一种具有2∶1型片层状硅铝酸盐结构的层状黏土,其单元层由2层Si—O四面体中间夹着一层Al-O八面体构成。蒙脱土结构比较松散,结构单元层之间以分子力连接,可制备不同性质的柱撑黏土催化剂。在蒙脱土的四面体片中,部分Si4+可被A13+置换。当黏土片层所带的电荷密度一定时,黏土层间距将会随着金属柱撑阳离子体积的增大而扩大,从而获得不同孔径的孔隙结构。Al-PILC柱撑黏土是通过AlCl3水解产生的[Al13O4(OH)24(H2O)12]7+,与蒙脱土层间吸附的阳离子之间进行离子交换制得的[12]。在锻烧过程中,这些[Al13O4(OH)24(H2O)12]7+无机阳离子在高温下经过脱水反应,在蒙脱土层间形成稳定的Al2O3金属氧化物簇,这些Al2O3簇像柱子一样矗立于单元结构层之间,从而增加了蒙脱土的层间距使得载体材料(Al-PILC)的比表面积大幅提高。在制备过程中,Al3+与黏土原料的比例或黏土层间负载的Al3+的量将影响Al-PILC柱撑黏土的物理化学性质,从而影响其脱硝的催化活性。此外,前期的研究[13]发现,不同的焙烧温度对催化剂的孔隙结构和表面活性组分的晶体形态造成了一定的影响。因此,本研究在前期研究工作的基础上,研究了柱撑Al3+与黏土比例和焙烧温度这2个因素对Fe/Al-PILC催化剂表面C3H6-SCR性能的影响,研究结果对于进一步优化催化剂的合成工艺具有一定的参考意义。
铁修饰铝柱撑黏土催化剂(Fe/Al-PILC)的制备及其对C3H6-SCR活性的影响
Influence of preparation process on C3H6-SCR activity over aluminum pillared clays modified with iron catalyst (Fe-Al-PILC)
-
摘要: 制备了铝离子柱撑蒙脱土负载铁离子的催化剂,采用XRD、H2-TPR、Py-IR、UV-vis光谱、ICP、N2吸附-脱附等多种分析方法,对催化剂的基础物理化学性质进行了系统地表征。在固定床微反应器内,对丙烯在该催化剂表面选择性还原NO的特性进行了研究,考察了柱撑Al3+与黏土比例以及焙烧温度对催化剂的物化性质以及脱硝效果的影响。结果表明:9Fe/Al-PILC样品具有较高的C3H6-SCR脱硝性能,Al3+/蒙脱土的比值对脱硝性能的影响较大,而载体的焙烧温度的影响相对较小;按照Al3+/蒙脱土比值的大小,催化剂活性高低排序为9Fe/Al-PILC-10>9Fe/Al-PILC-20>9Fe/Al-PILC-5>9Fe/蒙脱土>9Fe/Al-PILC-40;柱撑离子Al3+使蒙脱土的比表面积急剧增大,催化剂具有微孔和介孔结构,Al3+/蒙脱土比为10 mmol·g−1时载体柱撑效果最佳;在负载铁离子后的Fe/Al-PILC催化剂中,铁氧化物高度分散在载体表面。H2-TPR表明催化剂的氧化还原性能可影响催化剂的SCR活性。UV-vis结果表明,低聚态FexOy物种的形成有助于提升催化剂的反应性能。Py-IR实验结果表明,Lewis酸和Brønsted酸均有利于选择性催化还原NO,9Fe/Al-PILC-10催化剂活性最好,与其Brønsted酸含量较多有关。以上结果对于进一步优化柱撑黏土催化剂的合成工艺具有参考价值。Abstract: Iron loaded aluminum-pillared montmorillonite catalysts (Fe-Al-PILC) were prepared. The analysis methods including XRD, H2-TPR, Py-IR, UV-vis, ICP, N2 adsorption-desorption, etc were used to systematically characterize the basic physical and chemical properties of the catalysts. In a fixed-bed reactor, the characteristics of NO selective catalytic reduction (SCR) by propylene on the catalyst surface were studied, and the effects of the Al3+/clay ratios and calcination temperature on the physicochemical properties and denitrification performance of the catalyst were investigated. The results showed that 9Fe/Al-PILC had high C3H6-SCR performance, e.g., 100% NO conversion to N2 was tested at 400 °C. The Al3+/clay ratio played more important role on NO conversion than the calcination temperature of the carrier. According to the Al3+/clay ratios, the order of catalytic activity was 9Fe/Al-PILC-10>9Fe/Al-PILC-20>9Fe/Al-PILC-5>9Fe/clay>9Fe/Al-PILC-40. Pillared Al3+ ions dramatically elevated the specific surface area of the montmorillonite, and the catalyst had micropores and mesoporous structures. When the Al3+/clay ratio was 10 mmol·g−1, the pillared montmorillonite had the best physicochemical property. In the Fe/Al-PILC catalysts, the iron oxides were highly dispersed on the support. H2-TPR showed that the redox of the catalyst affected its SCR activity. UV-vis results showed that Al3+ raised the amount of oligomer FexOy species, and the activity of the catalyst was positively correlated with the oligomer FexOy species. Py-IR results showed that both Lewis acid and Brønsted acid were conducive to the selective catalytic reduction of NO. 9Fe/Al-PILC-10 catalyst had the best SCR activity, which was related to its higher Brønsted acid content. The above results provide reference for further optimizing the preparation process of pillared clays catalyst.
-
Key words:
- selective catalytic reduction /
- pillared clays catalyst /
- propylene /
- Al3+/clay ratio
-
表 1 金属修饰柱撑黏土催化剂HC-SCR性能
Table 1. NOx removal efficiency of pillared clays catalysts modified with metals in HC-SCR
催化剂 反应条件 最大NO转化率/% 温度/℃ 来源 Cu/Ti-PILC 0.1% NO+0.1% C3H6+5% O2 总流量125 mL·min−1 55 260 [3] Cu/Fe-PILC 0.1% NO+0.1% C3H6+5% O2 GHSV=15 000 h−1 54 260 [4] Cu/Fe-PILC 0.09% NO+0.09% C3H6+10% O2 GHSV=15 000 h−1 66 275 [5] La-Cu/Al-Ce-PILC 0.2% NO+0.12% C3H6+2% O2 GHSV=12 000 h−1 58 350 [6] Cu/Al-Ce-PILC 0.22% NO+0.12% C3H6+2% O2 GHSV=24 000 h−1 56 350 [7] Cu/Ti-PILC 0.1% NO+0.1% C3H6+10% O2 GHSV=25 000 h−1 42 250 [8] Fe-PILC 0.9% NO+0.1% C3H6 GHSV=19 000 h−1 90 500 [9] Fe/Si-PILC 0.1% NO+0.5% C3H6+2% O2 GHSV=15 000 h−1 96 450 [10] Fe/Al-PILC 0.1% NO+0.5% C3H6+2% O2 GHSV=15 000 h−1 95 350 [11] 表 2 催化剂样品及其载体的物理特性
Table 2. Physical properties of different catalyst samples and the carrier
样品 Fe元素含量1)/
(mg·g−1)比表面积/
(m2·g−1)总孔容/
(cm3·g−1)平均孔径/
nm蒙脱土 — 24 0.099 16.44 Al-PILC-10 — 188 0.328 6.97 Al-PILC-40 — 114 0.119 6.12 9Fe/Al-PILC-10 92.54 186 0.264 5.68 9Fe/Al-PILC-40 92.11 99 0.096 5.52 9Fe/蒙脱土 91.63 21 0.096 15.21 注:1)表示 ICP的分析测试结果。 表 3 不同催化剂的B酸和L酸含量
Table 3. Brønsted and Lewis acid content of different catalysts
mmol·g−1 样品 150 ℃脱附 300 ℃脱附 B酸 L酸 B酸 L酸 蒙脱土[25] 0 0.045 27 0 0.023 19 Al-PILC-10 0.005 12 0.051 29 0.000 64 0.035 80 9Fe/Al-PILC-10 0.006 91 0.046 95 0 0.034 43 9Fe/Al-PILC-40 0.000 88 0.048 00 0 0.022 66 -
[1] GIL A, KORILI S A, TRUJILLANO R, et al. Pillared Clays and Related Catalysts[M]. Springer Science+Business Media, LLC, 2010. [2] GIL A, KORILI S A, VICENTE M A. Recent advances in the control and characterization of the porous structure of pillared clay catalysts[J]. Catalysis Reviews, 2008, 50(2): 153-221. doi: 10.1080/01614940802019383 [3] VALVERDE J L, LUCAS A D, SÁNCHEZ P, et al. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene[J]. Applied Catalysis B: Environmental, 2003, 43(1): 43-56. doi: 10.1016/S0926-3373(02)00274-6 [4] DORADO F, LUCAS A D, GARCÍA P B, et al. Preparation of Cu-ion-exchanged Fe-PILCs for the SCR of NO by propene[J]. Applied Catalysis B: Environmental, 2006, 65(3/4): 175-184. [5] 叶青, 闫立娜, 霍飞飞, 等. Fe柱撑海泡石负载Cu催化剂: 结构特点及其C3H6选择性催化还原NO催化性质[J]. 无机化学学报, 2012, 28(1): 103-112. [6] 郭锡坤, 刘庆红, 林绮纯. 镧改性铜基铝铈交联蒙脱土的制备及其对丙烯选择性还原NO的催化性能[J]. 催化学报, 2004, 25(12): 989-994. doi: 10.3321/j.issn:0253-9837.2004.12.013 [7] LIN Q C, HAO J M, LI J H, et al. Copper-impregnated Al-Ce-pillared clay for selective catalytic reduction of NO by C3H6[J]. Catalysis Today, 2007, 126(3/4): 351-358. [8] LU G, LI X Y, QU Z P, et al. Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene[J]. Chemical Engineering Journal, 2011, 168(3): 1128-1133. doi: 10.1016/j.cej.2011.01.095 [9] BELVER C, VICENTE M A, MARTÍNEZ A A, et al. Fe-saponite pillared and impregnated catalysts II: Nature of the iron species active for the reduction of NOx with propene[J]. Applied Catalysis B: Environmental, 2004, 50(2): 227-234. [10] YUAN M H, DENG W Y, DONG S L, et al. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chemical Engineering Journal, 2018, 353: 839-848. doi: 10.1016/j.cej.2018.07.201 [11] 钱文燕, 苏亚欣, 杨溪, 等. Fe/Al-PILC催化C3H6选择性还原NO的实验研究[J]. 燃料化学学报, 2017, 45(12): 1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012 [12] BOTTERO J Y, CASES J M, FIESSINGER F, et al. Studies of hydrolyzed aluminum chloride solutions. 1. Nature of aluminum species and composition of aqueous solutions[J]. Chemischer Informationsdienst, 1981, 12(5): 2933-2939. [13] ZHOU H, LI K K, ZHAO B T, et al. Surface properties and reactivity of Fe/Al2O3/cordierite catalysts for NO reduction by C2H6: Effects of calcination temperature[J]. Chemical Engineering Journal, 2017, 326: 737-744. doi: 10.1016/j.cej.2017.06.018 [14] CHAE H J, NAM I S, HAM S W, et al. Physicochemical characteristics of pillared interlayered clays[J]. Catalysis Today, 2001, 68(1): 31-40. [15] 李建龙, 张长远. 介孔分子筛集砷材料的制备与表征[J]. 化工进展, 2010, 29(3): 579-583. [16] 温勇. Al、Ti柱撑黏土的制备、表征和催化活性的初步研究[D]. 南京: 南京工业大学, 2004. [17] HUANG Q Q, ZUO S F, ZHOU R X. Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs[J]. Applied Catalysis B: Environmental, 2010, 95(3): 327-334. [18] OLIVEIRA L C A, RIOS R V R A, FABRIS J D, et al. Clay-iron oxide magnetic composites for the adsorption of contaminants in water[J]. Applied Clay Science, 2003, 22(4): 169-177. [19] GIUSEPPE F, GIULIANO M, GIOVANNI F, et al. A Mössbauer and structural investigation of Fe-ZSM-5 catalysts: Influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C3H8[J]. Applied Catalysis B: Environmental, 2011, 102(1/2): 215-223. [20] YANG R T, LI W B. Ion-exchanged pillared clays: A new class of catalysts for selective catalytic reduction of NO by hydrocarbons and by ammonia[J]. Journal of Catalysis, 1995, 155(2): 414-417. doi: 10.1006/jcat.1995.1223 [21] MOSQUEDA-JIMÉNEZ B I, JENTYS A, SESHAN K, et al. Structure-activity relations for Ni-containing zeolites during NO reduction I. Influence of acid sites[J]. Journal of Catalysis, 2003, 218(2): 348-353. doi: 10.1016/S0021-9517(03)00145-3 [22] MIRONYUK T V, ORLYK S N. Effect of rhodium on the properties of bifunctional MxOy/ZrO2 catalysts in the reduction of nitrogen oxides by hydrocarbons[J]. Applied Catalysis B: Environmental, 2007, 70(1/2/3/4): 58-64. doi: 10.1016/j.apcatb.2005.11.024 [23] LI N, WANG A Q, ZHENG M Y, et al. Probing into the catalytic nature of Co/sulfated zirconia for selective reduction of NO with methane[J]. Journal of Catalysis, 2004, 225(2): 307-315. doi: 10.1016/j.jcat.2004.04.026 [24] LI N, WANG A Q, WANG X D, et al. NO reduction by CH4 in the presence of excess O2 over Mn/sulfated zirconia catalysts[J]. Applied Catalysis B: Environmental, 2004, 48(4): 259-265. doi: 10.1016/j.apcatb.2003.11.002 [25] 李前程, 苏亚欣, 董士林, 等. Fe-PILC在贫燃条件下催化丙烯选择性还原NO[J]. 燃料化学学报, 2018, 46(10): 1240-1248. doi: 10.3969/j.issn.0253-2409.2018.10.012