-
随着中国经济持续高速增长和城市化率的提高,城市生活垃圾的产生量也迅速增加。相比于焚烧、堆肥等处置方法,就开发和建设成本而言,城市生活垃圾的填埋处置最为廉价[1],目前仍然被大规模应用。在我国,采用填埋方式处置的垃圾约占全部处置垃圾的70%[2],填埋所产生的巨量垃圾渗滤液对生态环境和人体健康的危害日益引起广泛关注。随着垃圾渗滤液的污染控制和排放标准日趋严格,对垃圾渗滤液处理工艺技术的改进和开发也提出了更高的要求。
垃圾渗滤液中含有大量难生物降解性有机物(包括酚类化合物、含氮化合物、酯和酮、烯烃、烷烃、醇类、多环芳烃、胺类和邻苯二甲酸类)、氨氮、无机盐以及重金属等[3-7],其成分与诸多因素相关,如降水、气候条件、垃圾类型和组成等,尤其是填埋龄[1]。一般而言,随垃圾填埋龄的增加,垃圾渗滤液的pH由酸性转变为碱性,氨氮浓度逐渐增高,可生物降解性逐渐下降[1, 8]。老龄垃圾渗滤液的填埋龄一般达10 a以上,其有机物以腐殖酸、富里酸类等难降解物质为主,具有可生化性差、氨氮浓度较高等特征[1]。高级氧化技术(advanced oxidation processes, AOPs)可去除传统技术无法处理的难降解有机物,并可提高污水的可生物降解性[9],因此,将其应用于老龄垃圾渗滤液的处理极具推广潜力。
AOPs包括2个过程,即高反应性的自由基的形成及其与有机化合物发生的自由基反应[8]。目前,对基于臭氧(O3)、过氧化氢(H2O2)和过硫酸盐(
${{\rm{S}}_2}{\rm{O}}_8^{2 - }$ 、${\rm{HS}}{{\rm{O}}_5^ -} $ )的AOPs研究比较广泛。其中O3的氧化性极强,其氧化还原电位达2.07 V,可与大多数有机物发生反应,速度快且无二次污染[10]。在基于O3的AOPs中,H2O2通过提供羟基自由基(·OH)和生成·OH的引发剂(H2O2部分分解产生${\rm{HO}}_2^{- }$ ),来促进O3对污染物的分解[11]。硫酸根自由基(${\rm{SO}}_4^{\cdot - }$ )不仅具有更强的氧化性(E0 = 2.5~3.1 V)和更长的半衰期[12],且其对pH的适应范围广(pH=4~9)[13]。而${\rm{SO}}_4^{\cdot - }$ 一般由过一硫酸盐(${\rm{HS}}{{\rm{O}}_5^ -} $ , PMS)或过二硫酸盐(${{\rm{S}}_2}{\rm{O}}_8^{2 - }$ , PS)经紫外光、热、过渡金属、碱或强氧化剂活化生成[14]。各种高级氧化过程产生的自由基攻击目标有机物,从而实现有机物的高效降解。YUAN等[15]比较了O3、PMS、O3/PS、O3/PMS和O3/H2O2体系降解布洛芬(IBP)的结果,指出O3/PMS对IBP的降解能力最强。对于垃圾渗滤液的处理,目前多限于利用某种特定的高级氧化过程评价有机物的降解。ABU AMR等[16]研究了O3/PS体系处理老龄垃圾渗滤液,内容包括处理过程中pH、O3、Na2S2O8的投加量对COD等去除的影响并确定了最优条件,同时还研究了有机污染物的可溶性和可生物降解性的变化情况。贺磊等[17]和胡兆吉等[18]分别考察了O3/H2O2体系深度处理垃圾渗滤液过程中pH、反应时间和H2O2投加量等对处理效果的影响,并确定了最优条件。目前,利用基于O3体系激发自由基的高级氧化过程对老龄垃圾渗滤液有机物的降解及提高其可生化性的研究尚不多,臭氧催化氧化体系在垃圾渗滤液处理实际工程应用的可行性仍有待进一步探讨。本研究针对O3/PS、O3/PMS和O3/H2O2氧化体系处理老龄垃圾渗滤液的过程,基于有机污染物降解动力学,探讨了初始pH、O3、H2O2、Na2S2O8或KHSO5的投加量对处理效果的影响,采用单位数量级能耗(electrical energy per order,EE/O)标准评价其能耗效率,进而比较分析3种高级氧化体系处理能力的差异、可行性及原因,为臭氧高级氧化技术的工程化应用提供参考。
不同臭氧催化氧化体系处理老龄垃圾渗滤液的效果及能耗分析
Effect and energy consumption analysis of aged landfill leachate treatment by different catalytic ozonation
-
摘要: 老龄垃圾渗滤液因其成分复杂且可生化性差,故传统技术无法对其进行有效降解,且利用臭氧催化氧化体系处理垃圾渗滤液缺乏系统性评估报道。为解决上述问题,采用臭氧/过二硫酸盐(
${{\rm{S}}_2}{{\rm{O}}_8^{2 - }}$ ,PS)、臭氧/过一硫酸盐(${\rm{HS}}{{\rm{O}}_5^ -} $ ,PMS)和臭氧/过氧化氢(H2O2)氧化体系,探讨了处理老龄垃圾渗滤液的可行性,考察了初始pH、温度、O3及H2O2、Na2S2O8、KHSO5的投加量等因素对其处理效果的影响,并对其能源效率进行了分析。结果表明,优化条件下,O3/PMS、O3/H2O2和O3/PS的单位数量级能耗(electrical energy per order,EE/O)分别为1 007.5、1 233.7、662.6 kWh·m−3,O3/PMS氧化体系处理老龄垃圾渗滤液的效果与O3/H2O2氧化体系相似,且优于O3/PS。由综合处理效果与能耗评估结果可知,O3/H2O2氧化体系最佳,在温度为25 ℃,pH=6,O3和H2O2投加量分别为3 g·h−1和2 125 mg·L−1,反应时间为60 min条件下,能耗最低,EE/O降至443.9 kWh·m−3,且TOC去除率和反应速率常数分别为27.1%和0.005 3 min−1,BOD5/COD也由0.18增至0.26。综合上述结果,基于臭氧体系的高级氧化法能耗较高,可将臭氧催化氧化与低成本的生物处理技术相结合,从而实现对污染物高效经济降解。上述研究结果可为臭氧高级氧化技术的工程化应用提供参考。Abstract: Aged landfill leachate was hardly degraded by traditional water treatment due to its highly complex composition and low biodegradability. There are few systematic evaluations on the landfill leachate treatment by ozone-based advanced oxidation processes (O3-based AOPs). This study investigated the feasibility of aged landfill leachate treated by O3/PS (peroxydisulfate,${{\rm{S}}_2}{{\rm{O}}_8^{2 - }}$ ), O3/PMS (peroxymonosulfate,${\rm{HS}}{{\rm{O}}_5^ -} $ ) and O3/H2O2 systems based on treatment efficiency and energy efficiency under different initial pH, temperature, O3, Na2S2O8, KHSO5 or H2O2 dosages. The results showed that the EE/O (electrical energy per order) of O3/PS, O3/PMS and O3/H2O2 systems were 662.6, 1 007.5 and 1 233.7 kWh·m−3, respectively, under the optimum conditions. The treatment efficiency of O3/PMS systems was similar to O3/H2O2 and was higher than O3/PS systems. In consideration of treatment efficiency and energy consumption, the optimum treatment was observed with the O3/H2O2 systems at 25 ℃, initial pH of 6.0, O3 dosage of 3 g·h−1, H2O2 dosage of 2 125 mg·L−1 and reaction time of 60 min, the EE/O was reduced to 443.9 kWh·m−3. The removal efficiency of total organic carbon (TOC) and the reaction rate constant were 27.1% and 0.005 3 min−1, respectively. And the BOD5/COD value also increased from 0.18 to 0.26. The analysis showed that O3-based AOPs were energy-intensive, the combination of catalytic ozonation and low-cost biological treatment technologies might achieve efficient and economic degradation of pollutants. This study can be considered as a reference for the engineering application of O3-based AOPs. -
表 1 水质分析方法及仪器
Table 1. Analysis methods and instruments of leachate quality
指标 方法 仪器 pH — HQ40d便携式多参数水质分析仪(Hach, USA) 盐度/电导率 — DDBJ-350便携式电导率仪(仪电科学仪器,中国) COD 重铬酸钾法 快速消解仪(连华科技,中国) TOC 湿式燃烧氧化法 TOC-Vcph(岛津,日本) BOD5 呼吸压差法 BOD5测定仪(OxiTop IS12, WTW, Germany) TN 过硫酸钾氧化-紫外分光光度法 TU-1810紫外可见分光光度计(普析通用仪器,中国) ${\rm{NH}}_4^ + $ -N钠氏试剂光度法 — TP/ ${\rm{P}}{{\rm{O}}_4^{3 - }}$ -P钼锑抗分光光度法 — TS 重量法 — Cl−/ ${\rm{S}}{{\rm{O}}_4^{2 - }}$ 离子色谱法 Dionex ICS-3000(Thermo Fisher Scientific, USA) 表 2 pseudo-first-order模型对老龄垃圾渗滤液中TOC降解的拟合及能效计算
Table 2. Fitting with pseudo-first-order for TOC removal and energy efficiency calculation in aged raw landfill leachate
氧化体系 温度/ ℃ pH O3投加量/
(g·h−1)Na2S2O8投加
量/(g·L−1)KHSO5投加
量/(g·L−1)H2O2投加
量/(g·L−1)反应
时间/hk/
min−1R2 TOC去除
率/%EE/O/
(kWh·m−3)O3 25 6 6.5 — — — 1 0.002 1 0.966 11 1 584.9 O3/PS 25 3 3 0.6 — — 1 0.000 2 0.662 1.54 11 021.2 25 6 3 0.6 — — 1 0.003 3 0.856 19.4 668 25 8.14 3 0.6 — — 1 0.003 1 0.912 17.2 711 25 9 3 0.6 — — 1 0.000 21 0.909 1.37 10 496.6 25 6 2 0.6 — — 1 0.002 7 0.855 17.8 626.8 25 6 4 0.6 — — 1 0.004 1 0.962 23.3 662.6 25 6 5 0.6 — — 1 0.003 7 0.918 22.6 872.6 25 6 6.5 0.6 — — 1 0.003 0 0.929 18.3 1 332.1 25 8.14 3 0.3 — — 1 0.002 6 0.995 14.8 719.3 25 8.14 3 0.9 — — 1 0.003 3 0.96 17.4 769.2 25 8.14 3 2.4 — — 1 0.003 5 0.983 18.2 1 202.5 O3/PMS 25 3 6.5 — 1.2 — 1 0.000 35 0.978 2.21 17 671.7 25 6 6.5 — 1.2 — 1 0.003 6 0.813 22.2 1 718.1 25 8.14 6.5 — 1.2 — 1 0.003 2 0.917 18.9 1 932.8 25 9 6.5 — 1.2 — 1 0.002 4 0.951 14 2 577.7 25 6 6.5 — 0.6 — 1 0.004 0 0.688 25.8 1 189.2 45 6 6.5 — 0.6 — 1 0.004 1 0.762 26.5 1 378.7 55 6 6.5 — 0.6 — 1 0.004 5 0.796 28.1 1 355.8 65 6 6.5 — 0.6 — 1 0.006 5 0.688 38.8 1 007.5 25 6 6.5 — 0.15 — 1 0.002 5 0.758 17 1 474.1 25 6 6.5 — 0.3 — 1 0.002 6 0.789 17.5 1 554.8 O3/H2O2 25 3 3 — — 2.125 1.5 0.000 93 0.967 7.97 2 529.5 25 6 3 — — 2.125 1.5 0.005 1 0.991 36.3 461.3 25 6 3 — — 2.125 1 0.005 3 0.991 27.1 443.9 25 8.14 3 — — 2.125 1.5 0.004 2 0.915 34.2 560 25 9 3 — — 2.125 1.5 0.002 2 0.948 18 1 069.7 25 6 6.5 — — 1.5 1.5 0.005 0 0.975 36.6 780.9 25 6 6.5 — — 3 1.5 0.005 0 0.977 37.1 896.1 25 6 6.5 — — 9 1.5 0.006 4 0.98 45.4 1 060.1 25 6 6.5 — — 9 1 0.006 9 0.969 33.5 1 233.7 25 6 6.5 — — 12 1.5 0.005 7 0.934 42 1 392.4 -
[1] RENOU S, GIVAUDAN J G, POULAIN S, et al. Landfill leachate treatment: review and opportunity[J]. Journal of Hazardous Materials, 2008, 150(3): 468-493. doi: 10.1016/j.jhazmat.2007.09.077 [2] 罗虹霖, 胡晖, 张敏, 等. 城市生活垃圾处理技术现状与发展方向[J]. 污染防治技术, 2018, 31(3): 22-25. [3] RIVERA-UTRILLA J, SÁNCHEZ-POLO M, MONDACA M A, et al. Effect of ozone and ozone/activated carbon treatments on genotoxic activity of naphthalenesulfonic acids[J]. Journal of Chemical Technology & Biotechnolog, 2002, 77(8): 883-890. [4] MARTTINEN S K, KETTUNEN R H, RINTALA J A. Occurrence and removal of organic pollutants in sewages and landfill leachates[J]. Science of the Total Environment, 2003, 301(1/2/3): 1-12. [5] SANG Y M, GU Q B, SUN T C, et al. Color and organic compounds removal from secondary effluent of landfill leachate with a novel inorganic polymer coagulant[J]. Water Science and Technology, 2008, 58(7): 1423-1432. doi: 10.2166/wst.2008.446 [6] ZAKARIA M P, GEIK K H, LEE W Y, et al. Landfill leachate as a source of polycyclic aromatic hydrocarbons (PAHs) to Malaysian waters[J]. Coastal Marine Science, 2005, 29(2): 116-123. [7] MEJBRI R, MATEJKA G, LAFRANCE P, et al. Fractionation and characterization of the organic matter in sanitary landfill leachates[J]. Revue Des Sciences De Leau, 1995, 8(2): 217-236. [8] KOW S H, FAHMI M R, ABIDIN C Z A, et al. Advanced oxidation processes: Process mechanisms, affecting parameters and landfill leachate treatment[J]. Water Environment Research, 2016, 88(11): 2047-2058. doi: 10.2175/106143016X14733681695285 [9] OLLER I, MALATO S, SÁNCHEZ-PÉREZ J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination: A review[J]. Science of the Total Environment, 2011, 409(20): 4141-4166. doi: 10.1016/j.scitotenv.2010.08.061 [10] 韩帮军. 臭氧催化氧化除污染特性及其生产应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. [11] STAEHELIN J, HOIGNE J. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide[J]. Environmental Science & Technology, 1982, 16(10): 676-681. [12] CONG J, WEN G, HUANG T L, et al. Study on enhanced ozonation degradation of para-chlorobenzoic acid by peroxymonosulfate in aqueous solution[J]. Chemical Engineering Journal, 2015, 264: 399-403. doi: 10.1016/j.cej.2014.11.086 [13] REN W, ZHOU Z, ZHU Y, et al. Effect of sulfate radical oxidation on disintegration of waste activated sludge[J]. International Biodeterioration & Biodegradation, 2015, 104: 384-390. [14] 李社锋, 王文坦, 邵雁, 等. 活化过硫酸盐高级氧化技术的研究进展及工程应用[J]. 环境工程, 2016, 34(9): 171-174. [15] YUAN Z, SUI M H, YUAN B, et al. Degradation of ibuprofen using ozone combined with peroxymonosulfate[J]. Environmental Science: Water Research & Technology, 2017, 3(5): 960-969. [16] ABU AMR S S, AZIZ H A, ADLAN M N, et al. Effect of ozone and ozone/persulfate processes on biodegradable and soluble characteristics of semiaerobic stabilized leachate[J]. Environmental Progress & Sustainable Energy, 2014, 33(1): 184-191. [17] 贺磊, 龚志豪, 朱旺平, 等. 响应面法优化臭氧催化氧化深度处理垃圾渗滤液[J]. 工业水处理, 2018, 38(6): 46-50. doi: 10.11894/1005-829x.2018.38(6).046 [18] 胡兆吉, 胡义亮, 陈建新, 等. O3/H2O2组合工艺深度处理垃圾渗滤液的试验研究[J]. 环境污染与防治, 2017, 39(2): 155-158. [19] MURUGANANDHAM M, SURI R P S, JAFARI S, et al. Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment[J]. International Journal of Photoenergy, 2014, 2014: 1-21. [20] 马春燕, 曹婉利, 刘媛, 等. 低强度超声波对残留H2O2的去除[J]. 安全与环境学报, 2018, 18(3): 1140-1144. [21] 曾晓岚, 黄永周, 张玉, 等. 过硫酸盐对有机废水CODCr测定的干扰及消除[J]. 重庆大学学报, 2017, 40(12): 79-86. [22] LIANG C, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543. doi: 10.1016/j.chemosphere.2008.08.043 [23] BOLTON J R, BIRCHER K G, TUMAS W, et al. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC technical report)[J]. Pure and Applied Chemistry, 2001, 73(4): 627-637. doi: 10.1351/pac200173040627 [24] WARDENIER N, LIU Z, NIKIFOROV A, et al. Micropollutant elimination by O3, UV and plasma-based AOPs: An evaluation of treatment and energy costs[J]. Chemosphere, 2019, 234: 715-724. doi: 10.1016/j.chemosphere.2019.06.033 [25] TANG S F, LI N, YUAN D L, et al. Comparative study of persulfate oxidants promoted photocatalytic fuel cell performance: Simultaneous dye removal and electricity generation[J]. Chemosphere, 2019, 234: 658-667. doi: 10.1016/j.chemosphere.2019.06.112 [26] RODRÍGUEZ-CHUECA J, GIANNAKIS S, MARJANOVIC M, et al. Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated ${\rm{HSO}}_5^- $ vs.${{\rm{S}}_2}{{\rm{O}}_8^{2 - }}$ in drinking water[J]. Applied Catalysis B: Environmental, 2019, 248: 62-72. doi: 10.1016/j.apcatb.2019.02.018[27] LI G J, HE J J, WANG D D, et al. Optimization and interpretation of O3 and O3/H2O2 oxidation processes to pretreat hydrocortisone pharmaceutical wastewater[J]. Environmental Technology, 2015, 36(8): 1026-1034. doi: 10.1080/09593330.2014.971885 [28] OH W D, DONG Z, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003 [29] ISHAK A R, HAMID F S, MOHAMAD S, et al. Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process[J]. Waste Management, 2018, 76: 575-581. doi: 10.1016/j.wasman.2018.02.047 [30] DENG Y, EZYSKE C M. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate[J]. Water Research, 2011, 45(18): 6189-6194. doi: 10.1016/j.watres.2011.09.015 [31] CHEN W M, LUO Y F, RAN G, et al. An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the O3/H2O2 and MW/PS processes[J]. Waste Management, 2019, 97: 1-9. doi: 10.1016/j.wasman.2019.07.016 [32] DENIERE E, VAN HULLE S, VAN LANGENHOVE H, et al. Advanced oxidation of pharmaceuticals by the ozone-activated peroxymonosulfate process: The role of different oxidative species[J]. Journal of Hazardous Materials, 2018, 360: 204-213. doi: 10.1016/j.jhazmat.2018.07.071 [33] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants[J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064 [34] HUANG Y H, HUANG Y F, HUANG C, et al. Efficient decolorization of azo dye reactive black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1110-1118. [35] SUN J H, SONG M K, FENG J L, et al. Highly efficient degradation of ofloxacin by UV/Oxone/Co2+ oxidation process[J]. Environmental Science and Pollution Research, 2012, 19(5): 1536-1543. doi: 10.1007/s11356-011-0654-6 [36] OCAMPO A M. Persulfate activation by organic compounds[D]. Washington: Washington State University, 2009. [37] YANG Y, JIANG J, LU X, et al. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process[J]. Environmental Science & Technology, 2015, 49(12): 7330-7339. [38] AMR S S A, AZIZ H A, ADLAN M N. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process[J]. Waste Management, 2013, 33(6): 1434-1441. doi: 10.1016/j.wasman.2013.01.039 [39] ZHANG Q, CHEN J B, DAI C M, et al. Degradation of carbamazepine and toxicity evaluation using the UV/persulfate process in aqueous solution[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(4): 701-708. [40] JI F Z, YIN H X, ZHANG H, et al. Treatment of military primary explosives wastewater containing lead styphnate (LS) and lead azide (LA) by mFe0-PS-O3 process[J]. Journal of Cleaner Production, 2018, 188: 860-870. doi: 10.1016/j.jclepro.2018.04.029 [41] VON SONNTAG C, VON GUNTEN U. Chemistry of Ozone in Water and Wastewater Treatment[M]. IWA Publishing, 2012. [42] GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21): 9308-9314. [43] ROSAL R, RODRÍGUEZ A, PERDIGÓN-MELÓN J A, et al. Oxidation of dissolved organic matter in the effluent of a sewage treatment plant using ozone combined with hydrogen peroxide (O3/H2O2)[J]. Chemical Engineering Journal, 2009, 149(1/2/3): 311-318. [44] CORTEZ S, TEIXEIRA P, OLIVEIRA R, et al. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments[J]. Journal of Environmental Management, 2011, 92(3): 749-755. doi: 10.1016/j.jenvman.2010.10.035 [45] 卓亚昆, 盛梅, 韩跃飞, 等. O3/H2O2氧化工艺深度处理胞苷酸生产废水[J]. 工业水处理, 2018, 38(10): 79-82. doi: 10.11894/1005-829x.2018.38(10).079 [46] TIZAOUI C, BOUSELMI L, MANSOURI L, et al. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems[J]. Journal of Hazardous Materials, 2007, 140(1/2): 316-324. [47] CORTEZ S, TEIXEIRA P, OLIVEIRA R, et al. Ozonation as polishing treatment of mature landfill leachate[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 730-734. [48] TRIPATHY B K, KUMAR M. Sequential coagulation/flocculation and microwave-persulfate processes for landfill leachate treatment: Assessment of bio-toxicity, effect of pretreatment and cost-analysis[J]. Waste Management, 2019, 85: 18-29. doi: 10.1016/j.wasman.2018.12.014 [49] 赵丽红, 聂飞. 水处理高级氧化技术研究进展[J]. 科学技术与工程, 2019, 19(10): 1-9. doi: 10.3969/j.issn.1671-1815.2019.10.001