-
我国马铃薯产量约占全球的26%[1],工业化马铃薯加工以生产淀粉为主,然而却有12%~20%的马铃薯以废水形式排出[2]。马铃薯加工废水的排放量大,有机物、悬浮物、有机氮等污染物浓度高[3],厌氧消化是其常用的生物处理方式。但该处理方式存在2个主要问题:废水的易生物降解性导致厌氧消化过程易遭遇VFAs积累而失败[4];该废水在厌氧消化过程中会产生高浓度氨氮,而高浓度氨氮也会对厌氧消化过程产生不利影响。目前,马铃薯加工废水的厌氧生物处理研究多关注运行参数(如HRT[5]、有机负荷[6]等)对处理效果的影响,但处理过程中运行控制优化[7]、产气模拟优化[8]以及三元pH缓冲调控[9]等也日益得到重视。厌氧消化系统中总氨氮(total nitrogen ammonia, TAN)由铵离子(ionic ammonia nitrogen, IAN)和游离氨(free ammonia nitrogen, FAN)共同构成,而FAN浓度受TAN浓度、pH和温度的影响较大[10]。GALLERT等[11]在研究有机废物中温厌氧消化时发现,当FAN浓度为0.22 g·L−1时,沼气产量减半;LI等[12]的研究则表明,TAN为3.0 g·L−1时会抑制丙酸降解,导致甲烷产率从82.91%降至28.09%。
TAN中的IAN可直接抑制产甲烷酶活性,FAN可被动渗透细胞膜[13],导致质子失衡或钾缺乏,从而引起氨氮抑制[14-15],造成VFAs积累;若无充足缓冲能力则pH降低[16],产气下降,影响系统运行稳定性甚至造成系统崩溃。因此,氨氮抑制的调控是实现高浓度有机废水厌氧消化处理稳定运行的关键之一。尽管厌氧微生物氨氮抑制以FAN或TAN为主尚有争议,但人们普遍认为氨氮对产甲烷古菌的影响大于大多数细菌[17]。虽然TAN是微生物生长必须的营养物质,且有利于提高基质缓冲能力,维持稳定的pH[18];但TAN超过一定浓度可能会对厌氧消化产生不利影响。中温厌氧消化过程中因底物类型、功能微生物种类、运行条件(如温度、pH和离子强度等)、微生物驯化和FAN计算方法等因素的不同,FAN和TAN的半抑制浓度变化范围较大,分别为32~1 450 mg·L−1和1 130~11 780 mg·L−1[19]。厌氧消化处理马铃薯加工废水存在遭遇氨氮抑制的风险,但其氨氮抑制阈值尚不清楚,因此,明确马铃薯加工废水厌氧消化处理过程的氨氮抑制阈值是针对性地制定氨氮抑制调控措施的前提。
本研究通过批式中温厌氧消化实验,考察不同氨氮浓度对马铃薯加工废水厌氧消化过程及产甲烷潜势的影响,研究VFAs、SCOD、蛋白质和多糖等有机物对氨氮浓度的响应,明确氨氮抑制阈值,以期为调控马铃薯加工废水厌氧消化处理过程中的氨氮抑制及马铃薯加工废水高效处理与资源化利用提供参考。
氨氮浓度对马铃薯加工废水厌氧消化的影响
Effects of ammonia nitrogen concentration on anaerobic digestion of potato processing wastewater
-
摘要: 为考察氨氮浓度对中温厌氧消化处理马铃薯加工废水的影响,通过批式实验,探究该类废水厌氧消化处理的氨氮抑制阈值。结果表明:氨氮浓度为3 000 mg·L−1 (TAN≈3 659 mg·L−1)时,累积产甲烷量降低至276.1 mL·g−1且出现产甲烷迟滞期;氨氮浓度为4 000 mg·L−1 (TAN≈4 468 mg·L−1)时,累积产甲烷量仅为对照组的39.2%,迟滞期明显延长了7.2 d;高浓度氨氮抑制造成了以丙酸为主的VFAs积累和有机物(蛋白质等)降解不完全,这是COD去除率下降的主要原因;VFAs作为氨氮抑制发生时COD的主要组分,其积累可作为马铃薯加工废水厌氧消化过程发生氨氮抑制的指示因子;马铃薯加工废水中温厌氧消化的氨氮阈值约为3 000 mg·L−1。该结果可为马铃薯加工废水的高效处理与资源化利用提供参考。Abstract: To investigate the effects of ammonia concentration on mesophilic anaerobic digestion of potato processing wastewater, the batch tests of biochemical methane potential (BMP) were applied to quantify its threshold value of the ammonia inhibition. Results showed that the cumulative methane production decreased to 276.1 mL·g−1 at 3 000 mg·L−1 of ammonia nitrogen (TAN≈3 659 mg·L−1), and the lag period of methane production appeared. At 4 000 mg·L−1 (TAN≈4 468 mg·L−1) of ammonia nitrogen, the cumulative methane production was only 39.2% of that of the control group, and the lag period was prolonged by 7.2 d. The inhibition of high ammonia nitrogen concentration caused the accumulation of VFAs dominated by propionate and the incomplete degradation of organic matters i.e. protein, which also could be main reasons for the decrease of COD removal efficiency. The accumulation of VFAs could be used as an indicator for ammonia inhibition in the anaerobic digestion of potato processing wastewater because VFAs are the main components of COD when ammonia inhibition occurs.The threshold value of ammonia inhibition during the mesophilic anaerobic digestion of potato processing wastewater was around 3 000 mg·L−1. The study provides a reference for the high efficient treatment and comprehensive utilization of potato processing wastewater.
-
Key words:
- potato processing wastewater /
- anaerobic digestion /
- ammonia inhibition /
- propionate
-
表 1 厌氧消化实验物料的主要理化指标
Table 1. Physical and chemical characteristics of potato process wastewater and inocula
实验原料 pH SCOD/(mg·L−1) 碱度(以CaCO3计)/(mg·L−1) VSS/(g·L−1) TSS/(g·L−1) TAN/(mg·L−1) TVFAs/(mg·L−1) 接种污泥 7.14±0.01 396.67±5.77 707.67±59.53 28.50±3.54 38.00±5.66 176.10±2.14 30.03±8.01 马铃薯加工废水 6.90±0.01 21 180±173.21 1 350±60.83 17.50±0.71 22.00±0.00 194.57±8.83 1 106.76±133.73 表 2 Gompertz修正模型和一级反应动力学模型的拟合结果
Table 2. Results of kinetic study using modified Gompertz model and the first-order kinetic model
实验组 实际产甲烷
量/(mL·g−1)Gompertz修正模型 一级动力学模型 Pm/(mL·g−1) Rmax/(mL·(g·d)−1) λ/d R2 M0/(mL·g−1) K/d−1 R2 A 358.07 340.6 102.53 0.14 0.977 125.75 0.38 0.939 B 346.43 333.15 97.86 0.14 0.985 122.96 0.38 0.946 C 325.72 312.78 57.27 0.12 0.991 115.55 0.25 0.95 D 276.06 275.67 20.18 0.52 0.998 101.74 0.1 0.967 E 140.34 148.21 8.1 7.35 0.973 47.46 0.06 0.913 表 3 各实验组及对照组Spearman相关性分析结果
Table 3. Results of Spearman correlation analysis of experimental and control groups
指标 显著性/相关性 FAN A组 B组 C组 D组 E组 TAN 显著性 0.943** 1.000** 0.943** 0.943** 0.429 相关性 0.005 0.005 0.005 0.397 pH 显著性 1.000** 0.943** 1.000** 0.943** 0.943** 相关性 0.005 0.005 0.005 注:**表示P<0.05;相关性是指2个变量的关联程度,表中数值为SPSS软件分析的结果。 -
[1] TIAN Y S, MEI X S, LIANG Q, et al. Biological degradation of potato pulp waste and microbial community structure in microbial fuel cells[J]. RSC Advances, 2017, 7(14): 8376-8380. doi: 10.1039/C6RA27385H [2] FANG C, BOE K, ANGELIDAKI I. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors[J]. Bioresource Technology, 2011, 102(10): 5734-5741. doi: 10.1016/j.biortech.2011.03.013 [3] 张秀明, 韩雪, 陈志强. UASB-A/O工艺处理马铃薯淀粉废水[J]. 中国给水排水, 2011, 27(14): 78-80. [4] SCHALCHLI H, HORMAZABAL E, RUBILAR O, et al. Production of ligninolytic enzymes and some diffusible antifungal compounds by white-rot fungi using potato solid wastes as the sole nutrient source[J]. Journal of Applied Microbiology, 2017, 123(4): 886-895. doi: 10.1111/jam.13542 [5] KAMYAB B, ZILOUEI H, RAHMANIAN B. Investigation of the effect of hydraulic retention time on anaerobic digestion of potato leachate in two-stage mixed-UASB system[J]. Biomass and Bioenergy, 2019, 130: 105383. doi: 10.1016/j.biombioe.2019.105383 [6] ANTWI P, LI J Z, OPOKU B P, et al. Functional bacterial and archaeal diversity revealed by 16S rRNA gene pyrosequencing during potato starch processing wastewater treatment in an UASB[J]. Bioresource Technology, 2017, 235: 348-357. doi: 10.1016/j.biortech.2017.03.141 [7] YU D W, LIU J B, SUI Q W, et al. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater[J]. Bioresource Technology, 2016, 203: 62-70. doi: 10.1016/j.biortech.2015.12.010 [8] ANTWI P, LI J, SHI E, et al. Modelling biogas fermentation from anaerobic digestion: Potato starch processing wastewater treated within an up flow anaerobic sludge blanket[J]. Journal of Bioremediation & Biodegradation, 2017, 8(2): 1-9. [9] YU D W, MENG X S, LIU J B, et al. Formation and characteristics of a ternary pH buffer system for in-situ biogas upgrading in two-phase anaerobic membrane bioreactor treating starch wastewater[J]. Bioresource Technology, 2018, 269: 57-66. doi: 10.1016/j.biortech.2018.08.072 [10] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852. [11] GALLERT C, WINTER J. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: Effect of ammonia on glucose degradation and methane production[J]. Applied Microbiology and Biotechnology, 1997, 48(3): 405-410. doi: 10.1007/s002530051071 [12] LI Y, ZHANG Y, SUN Y M, et al. The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition[J]. Bioresource Technology, 2017, 231: 94-100. doi: 10.1016/j.biortech.2017.01.068 [13] MULLER T, WALTER B, WIRTZ A, et al. Ammonium toxicity in bacteria[J]. Current Microbiology, 2006, 52(5): 400-406. doi: 10.1007/s00284-005-0370-x [14] 张玉秀, 孟晓山, 王亚炜, 等. 畜禽废弃物厌氧消化过程的氨氮抑制及其应对措施研究进展[J]. 环境工程学报, 2018, 12(4): 985-598. doi: 10.12030/j.cjee.201706043 [15] GALLERT C, BAUER S, WINTER J. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population[J]. Applied Microbiology and Biotechnology, 1998, 50(4): 495-501. doi: 10.1007/s002530051326 [16] BANKS C J, CHESSHIRE M, HEAVEN S, et al. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance[J]. Bioresource Technology, 2011, 102(2): 612-620. doi: 10.1016/j.biortech.2010.08.005 [17] CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. doi: 10.1016/j.biortech.2007.01.057 [18] MAO C, FENG Y, WANG X, et al. Review on research achievements of biogas from anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 540-555. doi: 10.1016/j.rser.2015.02.032 [19] CAPSON-TOJO G, MOSCOVIZ R, ASTALS S, et al. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 1-16. [20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [21] FROLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761. doi: 10.1007/s002530050481 [22] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 [23] FORD D L, CHURCHWELL R L, KACHTICK J W. Comprehensive analysis of nitrification of chemical-processing wastewaters[J]. Journal Water Pollution Control Federation, 1980, 52(11): 2726-2746. [24] KAFLE G K, KIM S H. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation[J]. Applied Energy, 2013, 103: 61-72. doi: 10.1016/j.apenergy.2012.10.018 [25] 孟晓山, 张玉秀, 隋倩雯, 等. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064 [26] LAY J J, LI Y Y, NOIKE T. The influence of pH and ammonia concentration on the methane production in high-solids digestion processes[J]. Water Environment Research, 1998, 70(5): 1075-1082. doi: 10.2175/106143098X123426 [27] WAN J J, JING Y H, ZHANG S C, et al. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis[J]. Water Research, 2016, 102: 524-532. doi: 10.1016/j.watres.2016.07.002 [28] CHEN Y, JIANG X, XIAO K K, et al. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase: Investigation on dissolved organic matter transformation and microbial community shift[J]. Water Research, 2017, 112: 261-268. doi: 10.1016/j.watres.2017.01.067 [29] ZHANG W Q, LANG Q Q, WU S B, et al. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China[J]. Bioresource Technology, 2014, 156: 63-69. doi: 10.1016/j.biortech.2014.01.013 [30] LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review[J]. Environment International, 2019, 123: 10-19. doi: 10.1016/j.envint.2018.11.039 [31] AHRING B K, SANDBERG M, ANGELIDAKI I J A M, et al. Volatile fatty acids as indicators of process imbalance in anaerobic digestors[J]. Applied Microbiology and Biotechnology, 1995, 43(3): 559-665. doi: 10.1007/BF00218466 [32] RAJAGOPAL R, MASSE D I, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143: 632-641. doi: 10.1016/j.biortech.2013.06.030 [33] SHI X, LIN J E, ZUO J E, et al. Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J]. Journal of Environmental Sciences-China, 2017, 55: 49-57. doi: 10.1016/j.jes.2016.07.006 [34] WANG Q H, KUNINOBU M, OGAWA H I, et al. Degradation of volatile fatty acids in highly efficient anaerobic digestion[J]. Biomass & Bioenergy, 1999, 16(6): 407-416. [35] HILL D T, COBB S A, BOLTE J P. Using volatile fatty-acid relationships to predict anaerobic digester failure[J]. Transactions of the ASAE, 1987, 30(2): 496-501. doi: 10.13031/2013.31977 [36] 高树梅. 餐厨垃圾厌氧消化过程中氨氮耐受响应机制研究[D]. 无锡: 江南大学, 2015. [37] 李蕾. 餐厨垃圾厌氧消化过程失稳的动力学特征及微生物机理研究[D]. 重庆: 重庆大学, 2016. [38] LE C, STUCKEY D C. Impact of feed carbohydrates and nitrogen source on the production of soluble microbial products (SMPs) in anaerobic digestion[J]. Water Research, 2017, 122: 10-16. doi: 10.1016/j.watres.2017.05.061 [39] 詹瑜, 施万胜, 赵明星, 等. 高含固污泥厌氧消化中蛋白质转化规律[J]. 环境科学, 2018, 39(6): 2778-2785. [40] PARK S, KIM M. Effect of ammonia on anaerobic degradation of amino acids[J]. KSCE Journal of Civil Engineering, 2015, 20(1): 129-136. [41] WANG Q, KUNINOBU M, KAKIMOTO K, et al. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment[J]. Bioresource Technology, 1999, 68(3): 309-313. doi: 10.1016/S0960-8524(98)00155-2 [42] WEIMER P J. End product yields from the extraluminal fermentation of various polysaccharide, protein and nucleic acid components of biofuels feedstocks[J]. Bioresource Technology, 2011, 102(3): 3254-3259. doi: 10.1016/j.biortech.2010.11.050 [43] YANG G, ZHANG P Y, ZHANG G M, et al. Degradation properties of protein and carbohydrate during sludge anaerobic digestion[J]. Bioresource Technology, 2015, 192: 126-130. doi: 10.1016/j.biortech.2015.05.076 [44] WIEGANT W, ZEEMAN G. The mechanism of ammonia inhibition in the thermophilic digestion of livestock wastes[J]. Agricultural Wastes, 1986, 16(4): 243-253. doi: 10.1016/0141-4607(86)90056-9 [45] HEJFELT A, ANGELIDAKI I. Anaerobic digestion of slaughterhouse by-products[J]. Biomass and Energy, 2009, 33(8): 1046-1054. doi: 10.1016/j.biombioe.2009.03.004 [46] SUN S, LIU T. Ammonia inhibition on thermophilic anaerobic digestion[J]. Chemosphere, 2003, 53(1): 43-52. doi: 10.1016/S0045-6535(03)00434-X [47] HANSEN K H, ANGELIDAKI I, AHRING B K. Anaerobic digestion of swine manure: Inhibition by ammonia[J]. Water Research, 1998, 32(1): 1-12. doi: 10.1016/S0043-1354(97)00203-0 [48] ALBERTSON O E. Ammonia nitrogen and the anaerobic environment[J]. Journal Water Pollution Control Federation, 1961, 33(9): 978-995. [49] BARAMPOUTI E M, MAI S T, VLYSSIDES A G. Dynamic modeling of the ratio volatile fatty acids/bicarbonate alkalinity in a UASB reactor for potato processing wastewater treatment[J]. Environmental Monitoring and Assessment, 2005, 110(1/2/3): 121-128. [50] ZICKEFOOSE C, HAYES R. Anaerobic Sludge Digestion: Operations Manual[M]. Washington DC: Office of Water Program Operations, US Environmental Protection Agency, 1976. [51] LI L, PENG X Y, WANG X M, et al. Anaerobic digestion of food waste: A review focusing on process stability[J]. Bioresoure Technology, 2018, 248: 20-28. doi: 10.1016/j.biortech.2017.07.012