-
膜生物反应器作为一种将传统活性污泥处理技术及膜分离技术相结合的污水处理新工艺,其具有固液分离效果好、出水水质好、活性污泥浓度高、污泥产量低、抗冲击负荷强、占地面积小和管理方便等优点,在处理生活污水、工业废水等方面已被广泛地应用[1-2]。然而MBR仍然存在一些问题,使其在实际应用过程中受到限制:一方面,一体式MBR因缺少生物除磷条件而存在除磷效率低的问题,导致其难以满足严格的氮磷排放标准;另一方面,膜污染是MBR运行过程中不可避免的问题,在增加工艺过程能耗的同时,也会对膜组件造成损害。因此,寻求简单有效的方法,同时克服MBR除磷效率低以及膜污染的问题,对于MBR的广泛应用具有重要的意义。
目前,提高MBR除磷效率的研究主要集中在强化生物除磷和化学除磷2个方面。有研究[3-4]表明,采用MBR与多种工艺组合的方式可以为强化生物除磷提供条件,从而达到较好的脱氮除磷效果。但此方法的应用往往需要控制反应器好氧-厌氧条件,对MBR运行条件要求较高。而向MBR中投加铁盐、铝盐等通过化学沉淀作用辅助强化除磷的方法成本低、操作简单,故其得到了广泛的应用[5-7]。LI等[8]通过投加铁盐建立了一种同时使用化学除磷以及厌氧发酵的创新的环保MBR工艺,提高了磷去除率,同时通过污泥处理获得了较高的磷回收率。
膜污染是阻碍MBR技术应用的关键因素。目前,用于改善膜污染的方法主要有膜改性、改善污泥混合液性质新型生物方法等[9-10]。通过投加过滤助剂改善污泥混合液性质由于其操作简单、效果明显,已逐渐成为改善膜污染的重要方法[11]。污泥混合液在浸没式MBR中与膜组件直接接触,因此,污泥混合液性质如污泥浓度(MLSS)[12-13],污泥形态等均是影响膜污染的重要参数。随着人们对膜污染认识的深入,污泥混合液中胞外聚合物(EPS)和溶解性微生物产物(SMP)对膜污染的影响研究也逐渐受到国内外研究者的重视[14]。絮凝剂可以有效改善污泥混合液性质,从而改善膜污染[15],但由于污泥混合液成分复杂,絮凝剂对MBR膜污染特性的影响还需要更多研究进行更全面和深入的分析。
与其他无机絮凝剂相比,铁系絮凝剂具有价格低廉,且对环境影响较小的优点。因此,本研究通过投加无机铁系絮凝剂,铁磷摩尔比为一般传统废水处理中常用摩尔比(约为2)[16],对连续曝气的一体式MBR进出水水质进行了分析,考察了絮凝剂对MBR运行效果的影响,并对污泥混合液的性质及膜上污染物进行了分析,研究了絮凝剂对污泥混合液的影响及其缓解膜污染的机理,以期为一体式好氧MBR及膜污染控制技术的应用提供参考。
FeSO4和PFS对膜生物反应器运行及膜污染特性的影响
Effect of FeSO4 and PFS on membrane bioreactor operation and membrane fouling characteristics
-
摘要: 采用一体浸没式膜生物反应器(MBR)处理模拟生活污水,考察了在投加不同铁盐絮凝剂(FeSO4和PFS)条件下反应器的运行效率及膜污染特性。进出水水质分析结果表明:铁盐絮凝剂的投加可明显提高MBR的除磷效率,反应器总磷的平均去除率由20.23%分别提高至74.29%和81.09%,对COD和氨氮的去除率没有明显的影响;污泥沉降得到改善,SVI明显降低,使泥饼层更加疏松,易于清洗。同时通过对不同絮凝剂条件下污泥混合液胞外聚合物以及膜上污染物的三维荧光分析,发现絮凝剂的加入能明显减少胞外聚合物中的多糖浓度以及膜上污染物质的结构类型,且主要减少了胡敏酸类物质对膜的污染。这对于提高出水水质,减缓膜污染具有重要意义。以上结果可为FeSO4和PFS在MBR中的应用提供参考。Abstract: An integrated submerged membrane bioreactor (MBR)was used to treat simulated domestic sewage, and the operating efficiency and membrane fouling characteristics of the reactor under the conditions of adding different iron salt flocculants (FeSO4 and PFS) were investigated. Quality of the influent and effluent showed that the addition of the iron salt flocculant significantly improved the phosphorus removal efficiency by MBR, and the average removal rate of total phosphorus by MBR increased from 20.23% to 74.29% and 81.09%, respectively, while had no significant impact on the removal of COD and NH3-N. Activated sludge settlement was improved, the SVI was significantly reduced, which resulted in looser and easy-cleaning cake layer on membrane. Three-dimensional fluorescence analysis on the extracellular polymer of the sludge and the membrane pollutants under different flocculant conditions showed that the dosing of flocculants could significantly reduce the polysaccharide concentration in extracellular polymers and the structure type of pollutants on the membrane, and mainly reduced the pollution effects of humic acids on the membrane. It is of great significance for improving effluent quality and relieving transmembrane pollution. The result can provide reference for application of FeSO4 and PFS in MBR.
-
Key words:
- membrane bioreactor /
- flocculant /
- phosphorous removal /
- membrane fouling
-
表 1 MBR运行工况
Table 1. Operating condition of MBR
阶段 运行时间/d 投加药剂 投加剂量/(mg·L−1) 1 01~76 无 — 2 77~129 FeSO4 70 3 130~180 PFS 75 -
[1] 黄霞, 曹斌, 文湘华, 等. 膜-生物反应器在我国的研究与应用新进展[J]. 环境科学学报, 2008, 28(3): 416-432. doi: 10.3321/j.issn:0253-2468.2008.03.003 [2] 孟志国, 杨凤林, 张兴文. 无纺布-膜生物反应器在生活污水处理中应用[J]. 大连理工大学学报, 2007, 47(3): 344-348. doi: 10.3321/j.issn:1000-8608.2007.03.007 [3] 赵珊珊, 胡啸, 王志良, 等. 膜生物反应器应用于脱氮除磷的研究进展[J]. 污染防治技术, 2011, 24(4): 37-41. [4] 刘运胜, 刘继先, 黄羽. MBR脱氮除磷组合工艺研究进展[J]. 绿色科技, 2016, 7(8): 46-48. doi: 10.3969/j.issn.1674-9944.2016.08.021 [5] LEE G, MODARRESI S, BENJAMIN M M. Efficient phosphorus removal from MBR effluent with heated aluminum oxide particles (HAOPs)[J]. Water Research, 2019, 159: 274-282. doi: 10.1016/j.watres.2019.05.010 [6] MBAMBA C K, LINDBLOM E, FLORES-ALSINA X, et al. Plant-wide model-based analysis of iron dosage strategies for chemical phosphorus removal in wastewater treatment systems[J]. Water Research, 2019, 155: 12-25. doi: 10.1016/j.watres.2019.01.048 [7] 高颖, 袁林江, 吕景花. 铁盐化学除磷对活性污泥生物除磷系统的影响[J]. 环境工程学报, 2016, 10(10): 5366-5372. doi: 10.12030/j.cjee.201602125 [8] LI R H, WANG X M, LI X Y. A membrane bioreactor with iron dosing and acidogenic co-fermentation for enhanced phosphorus removal and recovery in wastewater treatment[J]. Water Research, 2018, 129: 402-412. doi: 10.1016/j.watres.2017.11.035 [9] 刘锐, 黄霞, 汪诚文, 等. 一体式膜-生物反应器长期运行中的膜污染控制[J]. 环境科学, 2000, 21(2): 58-61. doi: 10.3321/j.issn:0250-3301.2000.02.014 [10] BAGHERI M, MIRBAGHERI S A. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater[J]. Bioresource Technology, 2018, 258: 318-314. doi: 10.1016/j.biortech.2018.03.026 [11] LE-CLECH P, CHEN V, FANE T A G. Fouling in membrane bioreactors used in wastewater treatment[J]. Journal of Membrane Science, 2006, 284(1/2): 17-53. [12] CHANG I S, KIM S N. Wastewater treatment using membrane filtration: Effect of biosolids concentration on cake resistance[J]. Process Biochemistry, 2005, 40(3/4): 1307-1314. [13] 陆继来, 刘舒华, 张敏健, 等. 污泥浓度对MBR混合液特性及膜污染的影响[J]. 中国给水排水, 2014, 30(9): 92-95. [14] WANG X M, WAI TE T D. Impact of gel layer formation on colloid retention in membrane filtration processes[J]. Journal of Membrane Science, 2008, 325(1): 486-494. doi: 10.1016/j.memsci.2008.08.016 [15] ZHANG Z, WANG Y, LESLIE G L, et al. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors[J]. Water Research, 2015, 69: 210-222. doi: 10.1016/j.watres.2014.11.011 [16] GANIGUE R, GUITIERREZ O, ROOTSEY R, et al. Chemical dosing for sulfide control in Australia: An industry survey[J]. Water Research, 2011, 45(19): 6564-6574. doi: 10.1016/j.watres.2011.09.054 [17] 李浩, 闫玉洁, 谢慧君, 等. Fe3+对同步硝化反硝化过程氮元素迁移转化及N2O释放的影响[J]. 环境科学, 2015, 36(4): 1392-1398. [18] 谢经良, 刘娥清, 赵新, 等. 不同形态铁盐的除磷效果[J]. 环境工程学报, 2012, 6(10): 3429-3432. [19] 孙宝盛, 张海丰, 齐庚申. 膜生物反应器中的非丝状菌污泥膨胀[J]. 天津大学学报, 2006, 39(4): 469-473. [20] P B, H Q, A O, et al. Clogging vs. fouling in immersed membrane bioreactors[J]. Water Research, 2018, 144: 46-54. doi: 10.1016/j.watres.2018.07.019 [21] 钱光磊, 谢陈鑫, 滕厚开, 等. 曝气对管式MBR膜污染及临界通量影响[J]. 环境工程学报, 2017, 11(8): 4542-4548. doi: 10.12030/j.cjee.201606166 [22] 魏春海, 黄霞, 赵曙光, 等. SMBR在次临界通量下的运行特性[J]. 中国给水排水, 2004, 22(11): 10-13. doi: 10.3321/j.issn:1000-4602.2004.11.003 [23] WANG Z, MA J, TANG C Y, et al. Membrane cleaning in membrane bioreactors: A review[J]. Journal of Membrane Science, 2014, 468: 276-307. doi: 10.1016/j.memsci.2014.05.060 [24] LEE J, AHN W Y, LEE C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Water Research, 2001, 35(10): 2435-2445. doi: 10.1016/S0043-1354(00)00524-8 [25] TIAN Y, CHEN L, ZHANG S, et al. Correlating membrane fouling with sludge characteristics in membrane bioreactors: An especial interest in EPS and sludge morphology analysis[J]. Bioresource Technology, 2011, 102(19): 8820-8827. doi: 10.1016/j.biortech.2011.07.010 [26] MENG F, ZHANG H, YANG F, et al. Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors[J]. Separation and Purification Technology, 2006, 51(1): 95-103. doi: 10.1016/j.seppur.2006.01.002 [27] 高元, 李绍峰, 陶虎春. MBR污泥混合液特性变化及膜污染关系研究[J]. 环境工程学报, 2011, 5(1): 28-32. [28] CHEN J R, ZHANG M J, LI F Q, et al. Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism[J]. Water Research, 2016, 102: 82-89. doi: 10.1016/j.watres.2016.06.028 [29] KHAN S J, VISVANATHAN C, JEGATHEESAN V. Effect of powdered activated carbon (PAC) and cationic polymer on biofouling mitigation in hybrid MBRs[J]. Bioresource Technology, 2012, 113: 165-168. doi: 10.1016/j.biortech.2011.12.107 [30] 宋悦, 魏亮亮, 赵庆良, 等. 活性污泥胞外聚合物的组成与结构特点及环境行为[J]. 环境保护科学, 2017, 43(2): 35-40. [31] 李会东, 李璟, 张哲歆, 等. 过氧化钙联合絮凝剂调理污泥改善脱水性能[J]. 环境工程学报, 2019, 13(11): 2736-2742. doi: 10.12030/j.cjee.201901088 [32] SUTZKOVER-GUTMAN I, HASSON D, SEMIAT R. Humic substances fouling in ultrafiltration processes[J]. Desalination, 2010, 261(3): 218-231. doi: 10.1016/j.desal.2010.05.008 [33] YU H R, WU Z J, ZHANG X L, et al. Characterization of fluorescence foulants on ultrafiltration membrane using front-face excitation-emission matrix (FF-EEM) spectroscopy: Fouling evolution and mechanism analysis[J]. Water Research, 2019, 148: 546-555. doi: 10.1016/j.watres.2018.10.041 [34] LIU T, CHEN Z L, YU W Z, et al. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy[J]. Water Research, 2011, 45(5): 2111-2121. doi: 10.1016/j.watres.2010.12.023 [35] MATILAINEN A, GJESSING E T, LAHTINEN T, et al. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment[J]. Chemosphere, 2011, 83(11): 1431-1442. doi: 10.1016/j.chemosphere.2011.01.018 [36] WEN C, PAUL W, LEENHEER A J, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [37] 刘铮, 董秉直, 陈艳, 等. 三维荧光光谱表征膜污染物[J]. 环境化学, 2010, 29(3): 496-501. [38] ZHANG T, LU J, MA J, et al. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation[J]. Chemosphere, 2007, 71(5): 911-921.