-
城市黑臭水体是指散发出刺鼻和恶心气味、呈黑色或灰黑色、生态功能丧失的水体,随着我国城市化的快速发展,其已成为一种普遍的城市病[1-2]。黑臭水体不仅会造成人体感官上的影响,对水体、河流底泥和周围空气均造成污染,同时影响生物健康[3]。因此,城市黑臭水体的治理成为城市生态环境质量改善和生态环境保护修复的重要工作。近年来,国家和各级政府对城市黑臭水体治理极其重视,黑臭水体治理已成为长江保护修复攻坚战行动计划中的一项关键工作,要求各城市逐步消除黑臭水体。因此,黑臭水体已成为城市政府和环保部门的重要工作,也是保障民生和实现城市环境质量改善的关键。
目前,针对黑臭水体的治理主要包括物理法(曝气充氧技术、引水稀释法、底泥疏浚法等)、化学法(混凝法、石灰法等)、生物法(活性污泥法、生物膜法、氧化塘法及水生植物净化技术等)[4-5]。物理法存在工作量大、成效慢等问题;化学法存在成本高、易反弹等缺陷;而生物法也存在成效慢、易受环境条件影响等问题。废水离线处理成为一种广受关注的黑臭河治理手段,其中介质加载混凝由于具有快速高效的处理能力,且易实现小型化及可移动化的装置构建,在黑臭水体的治理中已得到一定的应用。介质加载混凝是指在常规混凝过程中投加重质颗粒物,以实现沉淀时间和沉淀池容积的降低并提升混凝效率的一种混凝升级工艺,其已被广泛应用于水处理中[6-7]。但目前针对黑臭水体的介质加载混凝过程的污染物去除特征及其机理尚未得到关注,限制了其推广和应用。
本研究开展了石英砂和磁种2种介质加载混凝实验,研究了混凝过程中污染物特别是不同形态的磷和溶解性有机物(dissolved organic matter, DOM)的去除特征,考察了絮体粒径、形貌、沉降性能与强度,分析了介质加载混凝机理,以期为介质加载混凝在水处理中的应用提供参考。
介质加载混凝过程中磷和溶解性有机物的去除特征及混凝机理
Insight into the medium-loaded coagulation and the removal feature of phosphorus and DOM
-
摘要: 为考察介质加载混凝过程中污染物去除特征与探讨混凝机理,考察了不同形态的磷和溶解性有机物(DOM)的变化,并结合混凝絮体粒径与形貌,分析了介质加载的混凝机理。结果表明:溶解性污染物主要去除机制为聚合氯化铝(PAC)水解产物的吸附和螯合作用,高芳香性、腐殖化和分子质量为4 000~50 000 Da的DOM去除率较高;石英砂可强化去除悬浮态磷及腐殖酸类DOM;磁种可强化有机磷、
${\rm{PO}}_4^{3 - }$ -P和DOM的去除效果;回收磁种的微絮体结构使其对磷与大分子DOM具有更好的去除效果。介质加载混凝过程的关键作用在于形成密实性絮体,从而增强了絮体的强度和沉降性能,实现了污泥减量。研究结果可为介质加载混凝在水处理中的推广应用提供参考。Abstract: To understand the pollutants removal feature during medium-loaded coagulation and the corresponding coagulation mechanism, the variations of different forms of phosphorus and dissolved organic matter (DOM) were investigated in this work, in combination of flocs size and morphology, the corresponding coagulation mechanism were also discussed. The results showed that the adsorption and chelation of PAC hydrolysate mainly contributed to the removal of dissolved pollutants, and the DOM with high aromaticity, humification degree, and molecular weight (MW) of 4 000~50 000 Da presented higher removal rates than others. The silica sand enhanced the removal of suspended phosphorus and humic acid-like DOM. The magnetic seeds enhanced the removal of organic phosphorus, phosphate, and DOM. Due to their micro-floc structure, the recycled magnetic seed showed better removal effect toward phosphorus and DOM with high MW. The key for medium-loaded coagulation was the formation of compact flocs with enhanced strength and settleability, and the sludge volume reduction could be achieved. The result in this work provides reference for the generalization and application of medium-loaded coagulation in water and wastewater treatment.-
Key words:
- phosphorus /
- DOM /
- medium-loaded coagulation /
- coagulation mechanism /
- magnetic seed
-
表 1 不同介质加载混凝水样的UV-vis吸光度指数
Table 1. Effect of mediums addition on the UV-vis spectra index of coagulated water
实验组 UV254 UV260 UV280 E254/E365 E300/E400 E280/E472 A226~400 A275~295 A350~400 原水 0.261 0.245 0.209 1.813 1.400 2.58 34.776 4.144 6.692 A 0.128 0.125 0.107 2.667 2.000 4.409 14.073 1.881 1.839 B 0.125 0.123 0.102 2.750 2.393 4.381 13.453 1.802 1.796 C 0.137 0.129 0.103 3.186 2.355 4.478 14.925 1.984 1.91 D 0.128 0.127 0.100 2.913 2.250 4.762 14.648 1.939 1.913 E 0.123 0.125 0.099 2.977 2.182 4.950 14.461 1.928 1.899 F 0.117 0.122 0.096 2.822 2.121 5.333 14.072 1.873 1.839 G 0.126 0.120 0.095 2.761 2.345 5.278 13.847 1.838 1.822 H 0.132 0.126 0.100 3.000 2.250 5.556 14.534 1.936 1.899 表 2 不同介质加载混凝水样荧光指数的影响
Table 2. Effect of mediums addition on the fluorescence index of coagulated water
指标 f h b Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 Ⅴ区 原水 2.368 0.621 1.111 0.373 0.214 0.217 0.141 0.055 A 2.215 0.649 1.139 0.382 0.222 0.205 0.139 0.053 B 2.347 0.647 1.187 0.377 0.226 0.201 0.142 0.054 C 2.146 0.622 1.064 0.381 0.221 0.203 0.143 0.052 D 2.276 0.632 1.08 0.389 0.218 0.199 0.14 0.054 E 2.174 0.639 1.016 0.383 0.221 0.203 0.141 0.053 F 2.251 0.638 1.098 0.385 0.218 0.199 0.14 0.058 G 2.224 0.639 1.107 0.407 0.217 0.188 0.138 0.05 H 2.389 0.645 1.124 0.378 0.224 0.205 0.14 0.053 -
[1] 刘晓玲, 徐瑶瑶, 宋晨, 等. 城市黑臭水体治理技术及措施分析[J]. 环境工程学报, 2019, 13(3): 519-529. doi: 10.12030/j.cjee.201812181 [2] 吴世红. 城市黑臭水体遥感监测关键技术研究进展[J]. 环境工程学报, 2019, 13(6): 1261-1271. doi: 10.12030/j.cjee.201812020 [3] 刘建福, 陈敬雄, 辜时有. 城市黑臭水体空气微生物污染及健康风险[J]. 环境科学, 2016, 37(4): 1264-1271. [4] 胡洪营. 整治城市黑臭水体的技术措施[J]. 城乡建设, 2015(11): 11. doi: 10.3969/j.issn.1002-8455.2015.11.004 [5] 胡洪营, 孙艳, 席劲瑛, 等. 城市黑臭水体治理与水质长效改善保持技术分析[J]. 环境保护, 2015, 43(13): 24-26. [6] 王晓杰. 磁混凝-生物组合工艺处理城市黑臭河水研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [7] 孟令鑫, 胡天媛, 宫政, 等. 超磁混凝/接触氧化/稳定塘工艺应急处理黑臭水体[J]. 中国给水排水, 2018, 34(16): 93-96. [8] 李晓, 纪海霞, 程树辉, 等. 湛江市赤坎污水处理厂升级改造可行性分析[J]. 给水排水, 2019, 55(6): 11-15. [9] LI P, HUR J. Utilization of UV-vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. doi: 10.1080/10643389.2017.1309186 [10] GUO X J, HE X S, LI C W, et al. The binding properties of copper and lead onto compost-derived DOM using Fourier-transform infrared, UV-vis and fluorescence spectra combined with two-dimensional correlation analysis[J]. Journal of Hazardous Materials, 2019, 365: 457-466. doi: 10.1016/j.jhazmat.2018.11.035 [11] JACQUIN C, LESAGE G, TRABER J, et al. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR)[J]. Water Research, 2017, 118: 82-92. doi: 10.1016/j.watres.2017.04.009 [12] ZHENG L B, YU D W, WANG G, et al. Characteristics and formation mechanism of membrane fouling in a full-scale RO wastewater reclamation process: Membrane autopsy and fouling characterization[J]. Journal of Membrane Sciences, 2018, 563: 843-856. doi: 10.1016/j.memsci.2018.06.043 [13] LIU J, YIN J, HE X, et al. Three-dimensional excitation and emission fluorescence-based method for evaluation of maillard reaction products in food waste treatment[J]. Journal of Chemistry, 2018, Special Issue: 1-11. [14] 徐慧, 肖峰, 王东升. 不同高岭土体系混凝过程中絮体形态的变化[J]. 环境工程学报, 2015, 9(7): 3121-3126. doi: 10.12030/j.cjee.20150708 [15] XIAO F, XIAO P, WANG D S. Influence of allochthonous organic matters on algae removal: Organic removal and floc characteristics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 1-11. [16] 王少康, 程方, 郭兴芳, 等. 磁粉在磁加载混凝深度除磷中的作用机理分析[J]. 环境工程学报, 2019, 13(2): 302-309. doi: 10.12030/j.cjee.201808161 [17] 丁潇蕾, 李云梅, 吕恒, 等. 城市黑臭水体的吸收特性分析[J]. 环境科学, 2018, 39(10): 4519-4529. [18] 胡家玮, 李军, 卞伟. 城市废水磁混凝预处理及其表征分析[J]. 给水排水, 2014, 50(S1): 221-225. [19] 王志康, 范毅, 桂昕, 等. Al2(SO4)3和FeCl3混凝对红枫湖溶解性有机质的去除及卤代烃控制的影响[J]. 环境工程学报, 2018, 12(2): 527-535. doi: 10.12030/j.cjee.201708021 [20] 胥国防, 王璐, 廖宇宏, 等. 制药废水混凝条件优化和荧光性DOM的去除[J]. 环境科学与技术, 2018, 41(S1): 132-138. [21] 程丽华, 王奇, 韩婷, 等. 混凝对二级出水中有机物分布特性的影响[J]. 环境工程学报, 2013, 7(8): 2919-2924. [22] 郑利兵, 佟娟, 魏源送, 等. 磁分离技术在水处理中的研究与应用进展[J]. 环境科学学报, 2016, 36(9): 3103-3117. [23] 阳旭. 高浊度原水磁加载混凝应急饮用水处理试验研究及工艺设计[D]. 杭州: 浙江大学, 2017.