-
盐酸四环素(TC)是一种常见的抗生素,因其具有生产量大、使用范围广、污染面积大等特点,并且在地表水中的含量达0.07~1.34 μg·L−1,从而引起全社会的高度关注[1-4]。目前,各种技术已被应用于降解和去除水体中抗生素,主要有活性污泥法[5]、吸附[6-7]、氯化[8]、高级氧化[9-10]、光解/光氧化[11-12]、声催化[13]。在上述过程中,由于抗生素的生物活性、极性和持久性,大多数生物过程和高级氧化处理均不足以使其降解和矿化[14]。
传统微电解技术在20世纪首次被用于废水预处理中,因其具有成本低、操作简单、效率高等优点被广泛应用于各种污染物的去除,尤其对含苯环类废水以及重金属有机污染物处理潜力巨大[15-17]。在微电解系统中,将铁(阳极)、碳(阴极)和废水(电解质)混合并接触,在他们之间形成大量的电流微观电池,其中电子转移、凝聚、沉积和吸附的机理同时发生,从而去除污染物[18-20]。不足之处是,在铁碳微电解体系中,常存在电极材料易失活、填料板结堵塞,气液传质效率低等问题。
近年来,微纳米气泡在水处理领域取得了巨大进步[21]。微纳米气泡(MB)是直径在几十nm~几十μm的气泡,而常规气泡(CB)是直径为几十mm~几cm的气泡,与之相比,微纳米气泡具有比表面积大、停留时间长、传质效率高、界面ζ电位高等性质。当微气泡破裂时,气液界面发生剧烈变化会将高浓度离子积蓄的化学能迅速释放,从而激发产生大量羟基自由基[22-23]。微纳米气泡在上浮过程首先是气泡与固态或胶体污染物结合,将污染物带到水面后再被去除,而气泡与污染物结合的过程是非常重要的环节,可以有效提高气液传质效率,促进臭氧分解产生羟基自由基,将微气泡与臭氧氧化技术结合起来有利于废水中有机物的降解[24-25]。微气泡处理苯酚溶液2 h,实验测得苯酚的含量降低了60%,结果表明,微气泡破裂产生的羟基自由基在苯酚的分解过程中起着重要的作用[26]。当用臭氧微纳米气泡处理酸性大红3R废水时,废水的脱色速率和去除率远高于传统气泡系统,且微气泡系统的臭氧分解系数是传统气泡系统的6.2倍[27]。以工业颗粒活性炭(AC)催化微气泡(MB)臭氧化法处理合成酸性大红3R废水,其效果明显优于单独的常规气泡(CB)和微气泡(MB)臭氧化法,这是因为微纳米气泡显著地促进了化学反应、物理吸附、气液界面的传质[28]。然而,将微气泡技术与铁碳微电解处理相结合的研究却鲜见报道。2种技术相结合既发挥了微气泡水中停留时间长、气液传质效率高等优点,一定程度上又解决了铁碳填料易板结堵塞,气液传质效率低的问题,可提高污染物去除率。
为有效处理盐酸四环素制药废水,本研究将微纳米气泡技术与传统铁碳微电解技术相结合,研究了反应时间、铁碳投加量、pH、MB进气量等因素对盐酸四环素去除率的影响。在此基础上,通过紫外可见光谱扫描以及液质联用(LC-MS)分析了盐酸四环素在MB/Fe-C体系的反应机理及可能的降解途径,以期为制药废水的处理提供参考。
微纳米气泡协同铁碳微电解工艺处理盐酸四环素废水
Tetracycline hydrochloride wastewater treatment by the synergetic process of iron-carbon micro-electrolysis and micro-nano-bubbles
-
摘要: 采用微纳米气泡联合铁碳微电解法处理盐酸四环素废水,用XRD和FT-IR对铁碳材料反应前后的结构进行了表征,研究了不同反应时间、铁碳投加量、pH、微纳米气泡进气量对盐酸四环素去除率的影响和一级反应动力学的特征。结果表明:微纳米气泡对铁碳微电解有显著的协同作用;当反应时间为120 min、铁碳投加量为100 g·L−1、pH=3、微纳米气泡进气量为30 mL·min−1时,浓度为20 mg·L−1的盐酸四环素降解效果达到最佳,降解率为80.84%,TOC去除率为47.89%。通过LC-MS测定分析,盐酸四环素经过分解转化为m/z=194、m/z=181和m/z=174的产物,并最终转化分解为CO2和H2O。以上研究结果可为抗生素废水处理提供有益的参考。Abstract: Iron carbon micro-electrolysis in coordination with micro-nano-bubbles was used to treat tetracycline hydrochloride wastewater. The structures of iron carbon materials before and after reaction were characterized by XRD and FT-IR, the influences of different reaction time, iron carbon dosage, pH, and the amount of micro-nano-bubbles on the removal rate of tetracycline hydrochloride were studied, as well as the properties of first-order reaction kinetics. The results show that micro-nano-bubbles had a significant synergistic effect on iron carbon micro-electrolysis. At the reaction time of 120 min, the iron carbon dosage of 100 g·L−1, pH=3, and the MB air intake of 30 mL·min−1, the optimal degradation efficiency of tetracycline hydrochloride with the initial concentration of 20 mg·L−1 reached 80.84%, and TOC removal rate was 47.89%. The LC-MS analysis indicated that tetracycline hydrochloride decomposed to the products as m/z=194, m/z=181, and m/z=174, and finally converted into CO2 and H2O.The above research results can provide a useful reference for antibiotic wastewater treatment.
-
Key words:
- micro-nano bubbles /
- iron carbon micro-electrolysis /
- tetracycline /
- LC-MS
-
表 1 不同投加量条件下一级反应动力学特征
Table 1. Kinetic characteristics of first-order reaction at different dosages
铁碳投加量/(g·L−1) K/min−1 t1/2/min R2 TC浓度/(mg·L−1) 0 0.009 356 74.070 12 0.922 66 20 50 0.011 12 62.320 14 0.954 66 20 100 0.012 6 55 0.938 16 20 150 0.010 18 68.074 66 0.972 28 20 200 0.011 88 58.333 33 0.950 04 20 300 0.010 8 64.166 67 0.868 02 20 表 2 不同pH条件下一级反应动力学特征
Table 2. Kinetic characteristics of first-order reaction at different pHs
pH K/min−1 t1/2/min R2 TC浓度/(mg·L−1) 1 0.005 19 133.526 0.936 82 20 3 0.012 6 55 0.938 16 20 5 0.007 95 87.169 81 0.806 13 20 7 0.007 48 92.647 06 0.973 02 20 表 3 不同MB进气量条件下一级反应动力学特征
Table 3. Kinetic characteristics of first-order reaction at different MB air intake amounts
MB进气量/
(mL·min−1)K/min−1 t1/2/min R2 TC浓度/
(mg·L−1)10 0.006 37 108.791 2 0.965 43 20 20 0.006 86 101.020 4 0.983 4 20 30 0.012 6 55 0.938 1 20 40 0.008 86 78.216 7 0.984 06 20 50 0.007 43 93.270 52 0.963 4 20 60 0.006 72 103.125 0.970 77 20 -
[1] WANG J L, ZHUAN R, CHU L B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview[J]. Science of the Total Environment, 2019, 646: 1385-1397. doi: 10.1016/j.scitotenv.2018.07.415 [2] SZEKERES E, CHIRIAC C M, BARICZ A, et al. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas[J]. Environmental Pollution, 2018, 236: 734-744. doi: 10.1016/j.envpol.2018.01.107 [3] DANNER M C, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects[J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406 [4] SANGANYADO E, GWENZI W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks[J]. Science of the Total Environment, 2019, 669: 785-797. doi: 10.1016/j.scitotenv.2019.03.162 [5] YANG S F, LIN C F, WU C J, et al. Fate of sulfonamide antibiotics in contact with activated sludge-sorption and biodegradation[J]. Water Research, 2012, 46: 1301-1308. doi: 10.1016/j.watres.2011.12.035 [6] FIGUEROA R A, LEONARD A, MACKAY A A. Modeling tetracycline antibiotic sorption to clays[J]. Environmental Science & Technology, 2004, 38: 476-483. [7] SHI Y J, WANG X H, QI Z, et al. Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules[J]. Journal of Hazardous Materials, 2011, 191: 103-109. doi: 10.1016/j.jhazmat.2011.04.048 [8] LI B, ZHANG T. Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination[J]. Water Research, 2013, 47: 2970-2982. doi: 10.1016/j.watres.2013.03.001 [9] CHEN G, ZHAO L, DONG Y H. Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide[J]. Journal of Hazardous Materials, 2011, 193: 128-138. doi: 10.1016/j.jhazmat.2011.07.039 [10] KIM T H, KIM S D, KIM H Y, et al. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV[J]. Journal of Hazardous Materials, 2012, 227-228: 237-242. doi: 10.1016/j.jhazmat.2012.05.038 [11] MAROGA M V, HEQUET V, GRU Y, et al. Assessment of the efficiency of photocatalysis on tetracycline biodegradation[J]. Journal of Hazardous Materials, 2012, 209-210: 355-364. doi: 10.1016/j.jhazmat.2012.01.032 [12] AI C L, ZHOU D D, WANG Q, et al. Optimization of operating parameters for photocatalytic degradation of tetracycline using In2S3 under natural solar radiation[J]. Solar Energy, 2015, 113: 34-42. doi: 10.1016/j.solener.2014.12.022 [13] HOSEINI M, SAFARI G H, KAMANI H, et al. Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis[J]. Toxicological & Environmental Chemistry, 2013, 95: 1680-1689. [14] PULICHARLA R, BRAR S K, ROUISSI T, et al. Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication[J]. Ultrasonics Sonochemistry, 2017, 34: 332-342. doi: 10.1016/j.ultsonch.2016.05.042 [15] GUAN X, XU X, LU M, et al. Pretreatment of oil shale retort wastewater by acidification and ferric-carbon micro-electrolysis[J]. Energy Procedia, 2012, 17: 1655-1661. doi: 10.1016/j.egypro.2012.02.294 [16] 冯雅丽, 张茜, 李浩然, 等. 铁炭微电解预处理高浓度高盐制药废水[J]. 环境工程学报, 2012, 6(11): 3855-3860. [17] KANG M M, CHEN Q G, LI J J, et al. Preparation and study of a new type of Fe-C microelectrolysis filler in oil-bearing ballast water treatment[J]. Environmental Science and Pollution Research International, 2019, 26(11): 106739-10684. [18] HAN Y, LI H, LIU M, et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology, 2016, 170: 241-247. doi: 10.1016/j.seppur.2016.06.058 [19] AO L, XIA F, REN Y, et al. Enhanced nitrate removal by micro-electrolysis using Fe0 and surfactant modified activated carbon[J]. Chemical Engineering Journal, 2019, 357: 180-187. doi: 10.1016/j.cej.2018.09.071 [20] 邓禺南, 陈炜鸣, 崔瑜旗, 等. 铁碳促进O3/H2O2体系深度处理准好氧矿化垃圾床渗滤液尾水中难降解有机物[J]. 环境科学学报, 2018, 38(11): 4371-4382. [21] ATKINSON A J, APUL O G, SCHNEIDER O, et al. Nanobubble technologies offer opportunities to improve water treatment[J]. Accounts of Chemical Research, 2019, 52(5): 1196-1205. [22] AZEVEDO A, ETCHEPARE R, CALGAROTO, et al. Aqueous dispersion of nanobubbles: Generation, properties and features[J]. Minerals Engineering, 2016, 94: 29-37. doi: 10.1016/j.mineng.2016.05.001 [23] 刘春, 张磊, 杨景亮, 等. 微气泡曝气中氧传质特性研究[J]. 环境工程学报, 2010, 4(3): 585-589. [24] CHU L B, XING X H, YU A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J]. Chemosphere, 2007, 68(10): 1854-1860. doi: 10.1016/j.chemosphere.2007.03.014 [25] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84: 1175-1180. doi: 10.1016/j.chemosphere.2011.05.054 [26] LI P, TAKAHASHI M, CHI B K. Degradation of phenol by the collapse of microbubbles[J]. Chemosphere, 2009, 75(10): 1371-1375. doi: 10.1016/j.chemosphere.2009.03.031 [27] 张静, 杜亚威, 刘晓静, 等. 臭氧微气泡处理酸性大红3R废水特性研究[J]. 环境科学, 2015, 36(2): 584-589. [28] ZHANG J, HUANG G Q, LIU C, et al. Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J]. Separation and Purification Technology, 2018, 201: 10-18. doi: 10.1016/j.seppur.2018.02.003 [29] 贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801. [30] YANG Z, MA Y, LIU Y, et al. Degradation of organic pollutants in nearneutral pH solution by Fe-C micro-electrolysis system[J]. Chemical Engineering Journal, 2017, 315: 403-414. doi: 10.1016/j.cej.2017.01.042