-
苯酚对环境和人体的危害不容忽视[1]。美国环保署(EPA)制定标准指出,3.5 mg·L−1苯酚即可对人体造成危害[2]。因此,必须建立一种有效的方法处理含酚废水。Fenton氧化法有着较为广泛的适用范围、反应条件不苛刻、设备简单且可与多种方法联用,在水处理领域已得到了广泛的应用。传统的均相芬顿工艺中使用Fe2+(Fe3+)作为催化剂,但为了防止溶液中的Fe2+(Fe3+)沉淀,溶液必须为酸性(pH<3),对设备造成一定的腐蚀,而且随着反应的进行,会产生大量铁泥。此外,催化剂在反应过程中浓度不断降低且无法回收,双氧水利用率低,废水处理成本高,这些不利因素限制了芬顿氧化法的实际应用。为克服以上缺点,非均相类Fenton催化剂的研发成为了研究热点[3-7]。高聪等[8]利用Cu掺杂MIL-88B-Fe制备非均相类Fenton催化剂降解苯酚,从而提高了MIL-88B-Fe的催化效率。LUO等[9]以介孔ZSM-5分子筛为支撑体制备FeCu双金属催化剂,其催化活性优于单组分催化剂,且Cu和Fe之间的相互作用得到了加强。ZUBIR等[10]采用共沉淀法制备Fe3O4-GO复合材料催化双氧水降解偶氮染料,由于GO与Fe3O4之间的协同作用,偶氮染料的降解率可达到99%。
羟基氧化铁(FeOOH)有着较大的比表面积,其表面含有大量的羟基基团,具有很强的吸附和催化性能[11]。常洪铭等[12]采用水热法合成羟基氧化铁,在不调节pH的情况下,可以直接吸附矿山废水中的铜、铁等重金属,且吸附性能优于普通吸附剂。张丽清等[13]采用自制的FeOOH催化H2O2降解甲基橙,降解率达到97%,且发现在降解过程中羟基自由基起到了重要的作用。但羟基氧化铁为粉末状,不易沉降,使用后难以回收。聚铁硅盐(PFSC)是一种新型复合絮凝剂[14]。将聚铁硅盐和羟基氧化铁结合可以制备聚铁硅盐掺杂羟基氧化铁(PFSC-FeOOH),由于羟基氧化铁紧紧得结合在硅酸盐上,故大大的提高了催化剂的沉降性能。聚铁硅盐掺杂羟基氧化铁催化臭氧去除有机污染物性能良好[15],但作为类芬顿催化剂催化H2O2氧化有机物的研究还未见报道。
因此,本文采用共沉淀法制备了聚铁硅盐掺杂羟基氧化铁,用作类芬顿催化剂降解苯酚,利用X射线衍射(XRD)、扫描电子显微镜(SEM)以及傅里叶变换红外光谱(FT-IR)等技术手段对晶相结构、样品形貌及表面基团等物化性质进行了表征,并考察了反应时间、投加量、pH、初始浓度等因素对苯酚去除率的影响,探讨了可能的反应机理。本研究可为类芬顿催化剂的制备及其实际应用提供参考。
聚铁硅盐掺杂羟基氧化铁类芬顿催化氧化苯酚
Fenton-like catalytic oxidation of phenol by polysilicate ferric doped iron oxyhydroxides
-
摘要: 为解决非均相类芬顿法催化剂分离回收困难的问题,采用共沉淀法制备了催化剂聚铁硅盐掺杂羟基氧化铁(PFSC-FeOOH)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)以及傅里叶变换红外光谱(FT-IR)等技术手段对催化剂进行了表征。以苯酚为目标污染物,分别考察了催化剂用量、H2O2用量、反应温度、苯酚初始浓度和pH对PFSC-FeOOH催化H2O2去除苯酚效果的影响,探究了可能的反应机理。结果表明:在反应时间为40 min、pH=4、H2O2投加量为297 mmol·L−1、催化剂PFSC-FeOOH投加量为3 g·L−1、反应温度为室温((25±1) ℃)的条件下,苯酚降解率为90.48%;反应符合准一级反应动力学,速率常数为 0.0415 min−1;反应过程中羟基自由基(·OH)起主要作用,苯酚的分子结构被氧化破坏;反应后,催化剂易于沉降分离,沉降速度为0.1 m·min−1。以上研究结果可为实际有机废水的处理提供参考。
-
关键词:
- 聚铁硅盐掺杂羟基氧化铁 /
- 类芬顿 /
- 催化 /
- 过氧化氢 /
- 苯酚
Abstract: To solve the problem of difficulty in the separation and recycle of heterogeneous Fenton-like catalyst, polysilicate ferric doped iron oxyhydroxides (PFSC-FeOOH) was prepared by the co-precipitation method. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). Using phenol as the target pollutant, the effects of PFSC-FeOOH and H2O2 dosages, temperature, the initial concentration of phenol solution and pH on phenol removal by Fenton-like oxidation with PFSC-FeOOH catalyzing H2O2 were investigated, and the reaction mechanism was explored. The results showed that the phenol degradation efficiency was 90.48% at the reaction time of 40 min, pH of 3, the H2O2 dosage of 297 mmol·L−1, the catalyst PFSC-FeOOH dosage of 3 g·L−1 and room temperature ((25±1) ℃). The reaction process conforms to the Quasi-first order reaction, and the rate constant was 0.0415 min−1. The hydroxyl radical (·OH) played a major role in the reaction process, and the molecular structure of phenol was destroyed. After reaction, the catalytic was settled and separated easily with the sedimentation speed of 0.1 m·min−1. The Fenton-like oxidation with PFSC-FeOOH as catalyst can effectively treat phenol wastewater which provides some references for degradation of organic wastewater.-
Key words:
- polysilicate ferric doped iron oxyhydroxides /
- Fenton-like /
- catalysis /
- hydrogen peroxide /
- phenol
-
[1] LEAL T W, LOUREN L A, BRANDÍS L, et al. Low-cost iron-doped catalyst for phenol degradation by heterogeneous Fenton[J]. Journal of Hazardous Materials, 2018, 359(18): 96-103. [2] 董子萱, 廉新颖, 姜永海, 等. 水羟锰矿去除地下水中苯酚的影响因素及机理[J]. 环境工程学报, 2017, 11(8): 4481-4488. doi: 10.12030/j.cjee.201607181 [3] WU H H, DOU X W, DENGD Y, et al. Decolourization of the azo dye orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite[J]. Environmental Technology, 2012, 33(14): 255-261. [4] 王成, 徐灿灿, 刘锐, 等. Fe0还原、芬顿氧化及其耦合技术去除染料厂剩余污泥中的AOX[J]. 环境工程学报, 2017, 11(9): 5227-5232. doi: 10.12030/j.cjee.201609048 [5] KUMAR V, PANDEY N, DHARMADHIKARI S, et al. Degradation of mixed dye via heterogeneous Fenton process: Studies of calcination, toxicity evaluation and kinetics[J]. Water Environment Research, 2019, 92(2): 211-221. [6] 邓翠萍, 谢裕畴, 汪文思, 等. 磁性还原氧化石墨烯负载Fe0对罗丹明B的类芬顿降解[J]. 环境工程学报, 2017, 11(6): 3499-3506. doi: 10.12030/j.cjee.201603138 [7] ENRIC B, SERGI G S. Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule[J]. Separation and Purification Technology, 2020, 237: 116337-116342. [8] 高聪, 全燮, 陈硕. Cu掺杂MIL-88B-Fe活化双氧水降解有机污染物性能研究[J]. 大连理工大学学报, 2019, 59(1): 1-7. doi: 10.7511/dllgxb201901001 [9] LUO L, DAI C, ZHANG A, et al. A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation[J]. Catalysis Science & Technology, 2015, 5(6): 3159-3165. [10] ZUBIR N A, YACOU C, MOTUZAS J, et al. The sacrificial role of graphene oxide in stabilising Fenton-like catalyst GO-Fe3O4[J]. Chemical Communications, 2015, 51(45): 169-174. [11] 仇恩容. 羟基氧化铁复合物去除饮用水中铁锰试验研究[D]. 成都: 西南交通大学, 2016. [12] 常洪铭, 易筱筠, 韦朝海. FeOOH对采矿废水中重金属的吸附[J]. 环境工程学报, 2016, 10(9): 4956-4960. doi: 10.12030/j.cjee.201504125 [13] 张丽清, 刘志国, 周华锋, 等. 酸法制羟基氧化铁催化降解甲基橙研究[J]. 中南大学学报(自然科学版), 2015, 46(2): 416-420. doi: 10.11817/j.issn.1672-7207.2015.02.006 [14] WEI Y X, DING A M, DONG L, et al. Characterisation and coagulation performance of an inorganic coagulant: Poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470(4): 137-141. [15] 刘玥, 陈忠林, 杨磊, 等. 聚合硅酸铁催化臭氧氧化硝基氯苯的效能[J]. 哈尔滨工业大学学报, 2010, 42(6): 914-918. doi: 10.11918/j.issn.0367-6234.2010.06.018 [16] 中华人民共和国国家环境保护部. 水质挥发酚的测定4-氨基安替比林分光光度法: HJ 503-2009[S]. 2009-02-10. [17] 杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 1286-1294. doi: 10.12030/j.cjee.201710002 [18] OTTE K, SCHMAHL W W, PENTCHEVA R, et al. Study of arsenate adsorption on FeOOH surfaces: Evidence for competing binding mechanisms[J]. Journal of Physical Chemistry C, 2013, 117(30): 15571-15582. doi: 10.1021/jp400649m [19] 苗笑增, 戴慧旺, 陈建新, 等. 草酸根对α-FeOOH多相UV-Fenton催化能力的增效实验[J]. 环境科学, 2018, 39(3): 1202-1211. [20] 许俊鸽, 李云琴, 黄华山, 等. 三维花状结构α-FeOOH协同H2O2可见光催化降解双氯芬酸钠[J]. 环境科学, 2015, 36(6): 2122-2128. [21] ANTOINE T D, SAMUEL L, GEORGES L, et al. Non-thermal plasma synthesis of sea-urchin like α-FeOOH for the catalytic oxidation of orange II in aqueous solution[J]. Applied Catalysis B: Environmental, 2015, 176-177(10): 99-109. [22] QIAN X, REN M, ZHU Y, et al. Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites[J]. Environmental Science & Technology, 2017, 51(7): 3993-4000. [23] 蒋胜韬, 祝建中, 管玉江, 等. Si-FeOOH/H2O2类芬顿降解盐酸四环素废水的效能及其机理[J]. 化工学报, 2015, 66(10): 4244-4251. [24] 王万林. 我国复合型无机高分子絮凝剂的研究及应用进展[J]. 工业水处理, 2008, 28(4): 1-5. doi: 10.3969/j.issn.1005-829X.2008.04.001 [25] 刘玥, 龚为进. 聚铁硅盐掺杂羟基氧化铁催化剂的制备方法及其应用201410099599.9[P]. 2014-07-23. [26] TANG B H, ZHAO J T, JIAO Y, et al. Cucurbit uril promoted Fenton oxidation by modulating the redox property of catalysts[J]. Chemical Communications, 2019, 55(94): 14127-14130. doi: 10.1039/C9CC06877E [27] LAIJU A R, SIVASANKAR T, NIDHEESH P V. Iron-loaded mangosteen as a heterogeneous Fenton catalyst for the treatment oflandfill leachate[J]. Environmental Science and Pollution Research, 2014, 21(18): 10900-10907. doi: 10.1007/s11356-014-2883-y [28] 李阳, 王芬, 于雷, 等. 催化芬顿氧化处理苯酚废水[J]. 环境工程学报, 2017, 11(1): 267-272. doi: 10.12030/j.cjee.201509101 [29] JI X X, WANG H F, HU P J. First principles study of Fenton reaction catalyzed by FeOCl: Reaction mechanism and location of active site[J]. Rare Metals, 2019, 38(8): 783-792. doi: 10.1007/s12598-018-1140-9 [30] DAI F, FAN X R, GUNNAR R S, et al. Experimental and density functional theoretical study of the effects of Fenton’s reaction on the degradation of bisphenol A in a high voltage plasma reactor[J]. Journal of Hazardous Materials, 2016, 308(5): 419-429. [31] TONY M A, MANSOUR S A, TAYEB A M, et al. Use of a Fenton-likeprocess based on nano-haematite to treat synthetic wastewater contaminated by phenol: Process investigation and statistical optimization[J]. Arabian Journal for Science & Engineering, 2018, 43(5): 2227-2235. [32] SARMENTO A P, BORGES A C, DEMATOS A T, et al. Phenol degradation by Fenton-like process[J]. Environmental Science and Pollution Research, 2016, 23(18): 18429-18438. doi: 10.1007/s11356-016-6835-6